%I #10 Oct 01 2023 12:35:12
%S 1,5,21,65,168,364,726,1316,2253,3649,5681,8505,12390,17544,24318,
%T 33008,44061,57841,74935,95785,121098,151440,187650,230388,280683,
%U 339297,407415,485961,576290,679444,797016,930176,1080711,1249989
%N Expansion of (1 + 4*x + 14*x^2 + 34*x^3 + 63*x^4 + 80*x^5 + 87*x^6 + 68*x^7 + 42*x^8 + 20*x^9 + 7*x^10) / ((1 - x)*(1 - x^2)^2*(1 - x^3)^2*(1 - x^4)).
%D R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.28(c), y_5.
%H Vincenzo Librandi, <a href="/A055384/b055384.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_15">Index entries for linear recurrences with constant coefficients</a>, signature (1, 2, 0, -2, -4, 1, 3, 3, 1, -4, -2, 0, 2, 1, -1).
%t CoefficientList[Series[(1 + 4 x + 14 x^2 + 34 x^3 + 63 x^4 + 80 x^5 + 87 x^6 + 68 x^7 + 42 x^8 + 20 x^9 + 7 x^10) / ((1 - x) (1 - x^2)^2 (1 - x^3)^2 (1 - x^4)), {x, 0, 40}], x] (* _Vincenzo Librandi_, Aug 28 2016 *)
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, Jul 05 2000