login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055302 Triangle of labeled rooted trees with n nodes and k leaves, n >= 1, 1 <= k <= n. 23
1, 2, 0, 6, 3, 0, 24, 36, 4, 0, 120, 360, 140, 5, 0, 720, 3600, 3000, 450, 6, 0, 5040, 37800, 54600, 18900, 1302, 7, 0, 40320, 423360, 940800, 588000, 101136, 3528, 8, 0, 362880, 5080320, 16087680, 15876000, 5143824, 486864, 9144, 9, 0, 3628800 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Beginning with the second row, dividing each row by n gives the mirror of row n-1 of A141618. Under the exponential transform, the mirror of A141618 is generated, relating the number of connected graphs here to the number of disconnected graphs associated with A141618 (cf. A127671 and A036040). - Tom Copeland, Oct 25 2014

LINKS

Alois P. Heinz, Rows n = 1..141, flattened

N. J. A. Sloane, Transforms

Index entries for sequences related to rooted trees

FORMULA

E.g.f. (relative to x) satisfies: A(x,y) = xy + x*exp(A(x,y)) - x. Divides by n and shifts up under exponential transform.

T(n,k) = (n!/k!)*Stirling2(n-1, n-k). - Vladeta Jovovic, Jan 28 2004

T(n,k) = A055314(n,k)*(n-k) + A055314(n,k+1)*(k+1). The first term is the number of such trees with root degree > 1 while the second term is the number of such trees with root degree = 1. This simplifies to the above formula by Vladeta Jovovic. - Geoffrey Critzer, Dec 01 2012

E.g.f.: G(x,t) = log[1 + t * N(x*t,1/t)], where N(x,t) is the e.g.f. of A141618. Also, G(x*t,1/t)= log[1 + N(x,t)/t] is the comp. inverse in x of x / [1 + t * (e^x - 1)]. - Tom Copeland, Oct 26 2014

EXAMPLE

Triangle begins

     1,

     2,     0;

     6,     3,     0;

    24,    36,     4,     0;

   120,   360,   140,     5,    0;

   720,  3600,  3000,   450,    6, 0;

  5040, 37800, 54600, 18900, 1302, 7, 0;

MAPLE

T:= (n, k)-> (n!/k!)*Stirling2(n-1, n-k):

seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Nov 13 2013

MATHEMATICA

Table[Table[n!/k! StirlingS2[n-1, n-k], {k, 1, n}], {n, 0, 10}]//Grid  (* Geoffrey Critzer, Dec 01 2012 *)

PROG

(PARI)

A055302(n, k)=n!/k!*stirling(n-1, n-k, 2);

for(n=1, 10, for(k=1, n, print1(A055302(n, k), ", ")); print());

\\ Joerg Arndt, Oct 27 2014

CROSSREFS

Row sums give A000169. Columns 1 through 12: A000142, A055303-A055313. Cf. A055314.

Cf. A248120 for a natural refinement.

Sequence in context: A269795 A095834 A106828 * A055349 A161174 A291240

Adjacent sequences:  A055299 A055300 A055301 * A055303 A055304 A055305

KEYWORD

nonn,tabl,eigen

AUTHOR

Christian G. Bower, May 11 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 07:15 EDT 2018. Contains 316336 sequences. (Running on oeis4.)