This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055275 First differences of 9^n (A001019). 11
 1, 8, 72, 648, 5832, 52488, 472392, 4251528, 38263752, 344373768, 3099363912, 27894275208, 251048476872, 2259436291848, 20334926626632, 183014339639688, 1647129056757192, 14824161510814728, 133417453597332552, 1200757082375992968, 10806813741383936712 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS For n>=1, a(n) is equal to the number of functions f:{1,2...,n}->{1,2,3,4,5,6,7,8,9} such that for a fixed x in {1,2,...,n} and a fixed y in {1,2,3,4,5,6,7,8,9} we have f(x)<>y. - Aleksandar M. Janjic and Milan Janjic, Mar 27 2007 a(n) is the number of compositions of n when there are 8 types of each natural number. - Milan Janjic, Aug 13 2010 REFERENCES A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196. LINKS Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets Index entries for linear recurrences with constant coefficients, signature (9). EXAMPLE G.f.: (1-x)/(1-9x). a(n) = 8*9^(n-1); a(0)=1. a(n) = 9a(n-1) + (-1)^n*C(1,1-n). MATHEMATICA q = 9; Join[{a = 1}, Table[If[n == 0, a = q*a - 1, a = q*a], {n, 0, 25}]] (* Vladimir Joseph Stephan Orlovsky, Jul 11 2011 *) PROG (PARI) a(n)=if(n, 8*9^(n-1), 1) \\ Charles R Greathouse IV, Oct 07 2015 CROSSREFS Cf. A001019. Sequence in context: A062541 A057091 A156566 * A155198 A147840 A115970 Adjacent sequences:  A055272 A055273 A055274 * A055276 A055277 A055278 KEYWORD easy,nonn AUTHOR Barry E. Williams, May 28 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 11:23 EDT 2019. Contains 328056 sequences. (Running on oeis4.)