This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055274 First differences of 8^n (A001018). 9
 1, 7, 56, 448, 3584, 28672, 229376, 1835008, 14680064, 117440512, 939524096, 7516192768, 60129542144, 481036337152, 3848290697216, 30786325577728, 246290604621824, 1970324836974592, 15762598695796736, 126100789566373888, 1008806316530991104 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS For n>=1, a(n) is equal to the number of functions f:{1,2...,n}->{1,2,3,4,5,6,7,8} such that for a fixed x in {1,2,...,n} and a fixed y in {1,2,3,4,5,6,7,8} we have f(x)<>y. - Aleksandar M. Janjic and Milan Janjic, Mar 27 2007 a(n) is the number of compositions of n when there are 7 types of each natural number. - Milan Janjic, Aug 13 2010 For n>0, a(n) is not the sum of two nonnegative cubes. - Bruno Berselli, Mar 20 2012 REFERENCES A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196. F. Conti, R. Dvornicich, T. Franzoni and S. Mortola, Il Fibonacci N. 0 (included in Il Fibonacci, Unione Matematica Italiana, 2011), 1990, Problem 0.12.4 (see Berselli's comment). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets Index entries for linear recurrences with constant coefficients, signature (8). FORMULA G.f.: (1-x)/(1-8*x). G.f.: 1/( 1 - 7*sum(k>=1, x^k) ). a(n) = 7*8^(n-1); a(0)=1. a(n) = 8*a(n-1)+((-1)^n)*C(1, 1-n). a(n) = 7*sum(k=0..n-1, a(k)) for n>=1. - Adi Dani, Jun 24 2011 MATHEMATICA q = 8; Join[{a = 1}, Table[If[n == 0, a = q*a - 1, a = q*a], {n, 0, 25}]] (* Vladimir Joseph Stephan Orlovsky, Jul 11 2011 *) PROG (PARI) x='x+O('x^66); Vec((1-x)/(1-8*x)) /* Joerg Arndt, Jun 25 2011 */ CROSSREFS Cf. A001018. Sequence in context: A242159 A057090 A156362 * A152776 A155197 A147839 Adjacent sequences:  A055271 A055272 A055273 * A055275 A055276 A055277 KEYWORD nonn,easy AUTHOR Barry E. Williams, May 28 2000 EXTENSIONS More terms from James A. Sellers, May 29 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 02:23 EDT 2019. Contains 328135 sequences. (Running on oeis4.)