This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055272 First differences of 7^n (A000420). 5
 1, 6, 42, 294, 2058, 14406, 100842, 705894, 4941258, 34588806, 242121642, 1694851494, 11863960458, 83047723206, 581334062442, 4069338437094, 28485369059658, 199397583417606, 1395783083923242, 9770481587462694 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Partial sum of A055270. Conjecture in "Introduction a la theorie des nombres" by d'Armel Mercier and J. M. Deconinck: this is the period length of the fraction 1/7^n. For example 1/7^2=0.0204081632653061224489795918367346938775510204....with a period of 42 digits =6*7=a(2). The period of 1/7^3 has exactly 294=a(3) digits. - Benoit Cloitre, Feb 02 2002 Also phi(7^n), where phi is Euler's totient function. - Alonso del Arte, May 08 2006 For n>=1, a(n) is equal to the number of functions f:{1,2...,n}->{1,2,3,4,5,6,7} such that for a fixed x in {1,2,...,n} and a fixed y in {1,2,3,4,5,6,7} we have f(x)<>y. - Aleksandar M. Janjic and Milan Janjic, Mar 27 2007 a(n) is the number of compositions of n when there are 6 types of each natural number. - Milan Janjic, Aug 13 2010 Apart from the first term, number of monic squarefree polynomials over F_7 of degree n. - Charles R Greathouse IV, Feb 07 2012 REFERENCES A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196. LINKS Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets Index entries for linear recurrences with constant coefficients, signature (7). FORMULA G.f.: (1-x)/(1-7*x). G.f: 1/( 1 - 6*sum(k>=1, x^k) ). a(n) = 6*7^(n-1), a(0)=1. MATHEMATICA Table[EulerPhi[7^n], {n, 0, 19}] (* Alonso del Arte, May 08 2006 *) PROG (PARI) a(n)=round(7^n*6/7) \\ Charles R Greathouse IV, Feb 07 2012 CROSSREFS Cf. A000420, A055270. Sequence in context: A110711 A156361 A216517 * A155196 A147838 A127628 Adjacent sequences:  A055269 A055270 A055271 * A055273 A055274 A055275 KEYWORD easy,nonn AUTHOR Barry E. Williams, May 28 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 11:41 EDT 2019. Contains 328056 sequences. (Running on oeis4.)