This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055140 Triangle: matchings of 2n people with partners (of either sex) such that exactly k couples are left together. 2
 1, 0, 1, 2, 0, 1, 8, 6, 0, 1, 60, 32, 12, 0, 1, 544, 300, 80, 20, 0, 1, 6040, 3264, 900, 160, 30, 0, 1, 79008, 42280, 11424, 2100, 280, 42, 0, 1, 1190672, 632064, 169120, 30464, 4200, 448, 56, 0, 1, 20314880, 10716048, 2844288, 507360, 68544, 7560, 672, 72, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS T is an example of the group of matrices outlined in the table in A132382--the associated matrix for aC(1,1). The e.g.f. for the row polynomials is exp(x*t) * exp(-x) * (1-2*x)^(-1/2). T(n,k) = Binomial(n,k)* s(n-k) where s = A053871 with an e.g.f. of exp(-x) * (1-2*x)^(-1/2) which is the reciprocal of the e.g.f. of A055142. The row polynomials form an Appell sequence. [From Tom Copeland, Sep 10 2008] LINKS FORMULA a(n, k) = A053871(n-k)*C(n, k). EXAMPLE 1; 0,1; 2,0,1; 8,6,0,1; 60,32,12,0,1; ... MAPLE g[0] := 1: g[1] := 0: for n from 2 to 20 do g[n] := (2*(n-1))*(g[n-1]+g[n-2]) end do: T := proc (n, k) options operator, arrow; g[n-k]*binomial(n, k) end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form [From Emeric Deutsch, Jan 24 2009] CROSSREFS Cf. A055141, A055142. Sequence in context: A108998 A201637 A055141 * A191936 A021836 A072551 Adjacent sequences:  A055137 A055138 A055139 * A055141 A055142 A055143 KEYWORD nonn,tabl AUTHOR Christian G. Bower, May 09 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified May 23 21:41 EDT 2013. Contains 225612 sequences.