%I #47 Dec 31 2021 15:45:51
%S 1,0,1,1,2,1,8,12,6,1,81,108,54,12,1,1024,1280,640,160,20,1,15625,
%T 18750,9375,2500,375,30,1,279936,326592,163296,45360,7560,756,42,1,
%U 5764801,6588344,3294172,941192,168070,19208,1372,56,1,134217728
%N Triangle read by rows: T(n,k) = number of labeled endofunctions on n points with k fixed points.
%C The same triangle (except for signs) may be obtained from the determinants of the Brahmagupta matrices, setting x->Sqrt[z], y->1, t->n. - _Roger L. Bagula_, Apr 09 2008
%C From _Bob Selcoe_, Nov 15 2014 (Start):
%C T(n,k)/A000312(n) is the probability P(n,k) that any member (j) of set J={1..n} will be selected k times given n random draws from J. This is equivalent to rolling an n-sided die (with standard assumptions) with sides numbered j=1..n: P(n,k) is the probability that any j will show k times with n rolls.
%C P(n,k) = (n-2)!*(n-1)^(n-k+1 )/k!*(n-k)!*n^(n-1); n>1. As n approaches infinity, P(n,0) and P(n,1) approach 1/e. (End)
%C Row sums give n^n (see A000312). - _Bob Selcoe_, Sep 08 2015
%H G. C. Greubel, <a href="/A055134/b055134.txt">Table of n, a(n) for the first 50 rows, flattened</a>
%H Eric W. Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BrahmaguptaMatrix.html">Brahmagupta Matrix</a>.
%F T(n, k) = C(n, k)*(n-1)^(n-k), for n>1.
%F E.g.f.: (-LambertW(-y)/y)^(x-1)/(1+LambertW(-y)). - _Vladeta Jovovic_
%F O.g.f. for row n: (x + n - 1)^n. - _Geoffrey Critzer_, Mar 21 2010
%e Triangle T(n,k) begins:
%e 1;
%e 0, 1;
%e 1, 2, 1;
%e 8, 12, 6, 1;
%e 81, 108, 54, 12, 1;
%e 1024, 1280, 640, 160, 20, 1;
%e 15625, 18750, 9375, 2500, 375, 30, 1;
%e 279936, 326592, 163296, 45360, 7560, 756, 42, 1;
%e ...
%t Clear[B] B[0] = {{x, y}, {t*y, x}}; B[n_] := B[n] = B[n - 1].B[0]; Table[Det[B[n]] /. x -> Sqrt[z] /. y -> 1 /. t -> n, {n, 0, 10}]; a = Join[{{1}}, Table[CoefficientList[Det[B[n]] /. x -> Sqrt[z] /. y ->1 /. t -> n, z], {n, 0, 10}]]; Flatten[a] (* _Roger L. Bagula_, Apr 09 2008 *)
%t row[n_] := CoefficientList[(x + n - 1)^n + O[x]^(n+1), x];
%t Table[row[n], {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Apr 13 2017, after _Geoffrey Critzer_ *)
%t Join[{1, 0, 1}, Table[Binomial[n, k]*(n - 1)^(n - k), {n, 2, 49}, {k, 0, n}]] // Flatten (* _G. C. Greubel_, Nov 14 2017 *)
%o (PARI) for(n=0,15, for(k=0,n, print1(if(n==0 && k==0, 1, if(n==1 && k==0, 0, if(n==1 && k==1, 1, binomial(n,k)*(n-1)^(n-k)))), ", "))) \\ _G. C. Greubel_, Nov 14 2017
%Y Columns k=0-2 give: A065440, A055897, A081132(n-2) for n>=2.
%Y Row sums give A000312.
%Y Cf. A055135, A055136.
%K nonn,tabl
%O 0,5
%A _Christian G. Bower_, Apr 25 2000