login
Number of 4 X n binary matrices with no zero rows or columns, up to row and column permutation.
4

%I #15 Feb 28 2023 23:48:37

%S 1,8,42,179,633,2001,5745,15274,38000,89331,199715,427184,878152,

%T 1741964,3345562,6239390,11327863,20065972,34747460,58924066,98002370,

%U 160086580,257148244,406637336,633669040,973971441,1477810227,2215179768,3282598034,4811946882

%N Number of 4 X n binary matrices with no zero rows or columns, up to row and column permutation.

%H Andrew Howroyd, <a href="/A055082/b055082.txt">Table of n, a(n) for n = 1..1000</a>

%H F. Harary, L. March and R. W. Robinson, <a href="https://doi.org/10.1068/b050031">On enumerating certain design problems in terms of bicolored graphs with no isolates</a>, Environment and Planning, B 5 (1978), 31-43.

%H F. Harary, L. March and R. W. Robinson, <a href="/A007139/a007139.pdf">On enumerating certain design problems in terms of bicolored graphs with no isolates</a>, Environment and Planning B: Urban Analytics and City Science, 5 (1978), 31-43. [Annotated scanned copy]

%o (PARI) Vec((G(4, x) - G(3, x))*(1 - x) + O(x^30)) \\ G defined in A028657. - _Andrew Howroyd_, Feb 28 2023

%Y Column k=4 of A056152.

%Y Cf. A024206, A055609, A054976, A048291.

%K nonn

%O 1,2

%A _Vladeta Jovovic_, Jun 13 2000

%E Terms a(21) and beyond from _Andrew Howroyd_, Mar 25 2020