login
A055076
Multiplicity of Max{gcd(d, n/d)} when d runs over divisors of n.
11
1, 2, 2, 1, 2, 4, 2, 2, 1, 4, 2, 2, 2, 4, 4, 1, 2, 2, 2, 2, 4, 4, 2, 4, 1, 4, 2, 2, 2, 8, 2, 2, 4, 4, 4, 1, 2, 4, 4, 4, 2, 8, 2, 2, 2, 4, 2, 2, 1, 2, 4, 2, 2, 4, 4, 4, 4, 4, 2, 4, 2, 4, 2, 1, 4, 8, 2, 2, 4, 8, 2, 2, 2, 4, 2, 2, 4, 8, 2, 2, 1, 4, 2, 4, 4, 4, 4, 4, 2, 4, 4, 2, 4, 4, 4, 4, 2, 2, 2, 1, 2, 8, 2, 4, 8
OFFSET
1,2
COMMENTS
Number of distinct values of gcd(d, n!/d) if d runs over divisors of n! seems to be A046951(n).
a(n) = 1 iff n is a square. - Bernard Schott, Oct 22 2019
a(n) is the number of the unitary divisors (cf. A077610) of n that are exponentially odd (A268335). - Amiram Eldar, Nov 11 2022
The number of infinitary divisors of n that are squarefree (A005117). - Amiram Eldar, Jan 09 2024
FORMULA
Multiplicative with a(p^e) = 2^(e mod 2). - Vladeta Jovovic, Dec 13 2002
a(n) = 2^A162642(n). - Antti Karttunen, Dec 02 2017
a(n) = A034444(A007913(n)). [Found by LODA miner, see C. Krause link. Essentially the same formula as the above ones] - Antti Karttunen, Apr 05 2021
From Amiram Eldar, Sep 09 2023: (Start)
a(n) = A034444(A350389(n)).
Dirichlet g.f.: zeta(2*s) * Product_{p prime} (1 + 2/p^s). (End)
From Vaclav Kotesovec, Sep 09 2023: (Start)
Let f(s) = Product_{p prime} (1 - 3/p^(2*s) + 2/p^(3*s)).
Dirichlet g.f.: zeta(s)^2 * zeta(2*s) * f(s).
Sum_{k=1..n} a(k) ~ (Pi^2 * f(1) * n / 6) * (log(n) + 2*gamma - 1 + 12*zeta'(2)/Pi^2 + f'(1)/f(1)), where
f(1) = A065473 = Product_{primes p} (1 - 3/p^2 + 2/p^3) = 0.286747428434478734107892712789838446434331844097056995641477859336652243...,
f'(1) = f(1) * Sum_{primes p} 6*log(p) / (p^2 + p - 2) = f(1) * 2.798014228561519243358371276385174449737670294137200281334256087932048625...
and gamma is the Euler-Mascheroni constant A001620. (End)
EXAMPLE
n=120, the set of gcd(d, 120/d) values for the 16 divisors of 120 is {1,2,1,2,1,2,1,2,2,1,2,1,2,1,2,1}. The max is 2 and it occurs 8 times, so a(120)=8. This sequence seems to consist of powers of 2.
MAPLE
with(numtheory):
a:= n->(p->coeff(p, x, degree(p)))(add(x^igcd(d, n/d), d=divisors(n))):
seq(a(n), n=1..105); # Alois P. Heinz, Jul 21 2015
MATHEMATICA
a[n_] := With[{g = GCD[#, n/#]& /@ Divisors[n]}, Count[g, Max[g]]];
Array[a, 105] (* Jean-François Alcover, Mar 28 2017 *)
f[p_, e_] := 2^Mod[e, 2]; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Nov 11 2022 *)
PROG
(PARI) A055076(n) = if(1==n, n, my(es=factor(n)[, 2]~); prod(i=1, #es, 2^(es[i]%2))); \\ Antti Karttunen, Apr 05 2021
(Scheme, with memoization-macro definec)
(definec (A055076 n) (if (= 1 n) n (* (+ 1 (A000035 (A067029 n))) (A055076 (A028234 n))))) ;; Antti Karttunen, Dec 02 2017
KEYWORD
nonn,easy,mult
AUTHOR
Labos Elemer, Jun 13 2000
STATUS
approved