%I
%S 4,8,4,8,8,8,8,8,4,8,8,8,8,8,8,8,8,4,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
%T 8,8,8,8,4,8,8,8,8,8,8,8,8,8,8,8,8,4,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
%U 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,4,8,8
%N Number of Gaussian primes of successive norms (indexed by A055025).
%C These are the primes in the ring of integers a+bi, a and b rational integers, i = sqrt(1).
%D R. K. Guy, Unsolved Problems in Number Theory, A16.
%D L. W. Reid, The Elements of the Theory of Algebraic Numbers, MacMillan, NY, 1910, see Chap. V.
%H <a href="/index/Ga#gaussians">Index entries for Gaussian integers and primes</a>
%e There are 8 Gaussian primes of norm 5, +1+2i and +2+i, but only two inequivalent ones (2+i).
%t m = 32; Length /@ Split[Sort[Select[Flatten[Table[{a^2 + b^2, a + b*I}, {a, m, m}, {b, m, m}], 1], PrimeQ[#[[2]], GaussianIntegers > True] & ]], #1[[1]] == #2[[1]] & ][[1 ;; 87]] (* _JeanFrançois Alcover_, Apr 08 2011 *)
%Y Cf. A055025A055029, A055664...
%K nonn,easy,nice
%O 1,1
%A _N. J. A. Sloane_, Jun 09 2000
%E More terms from Reiner Martin (reinermartin(AT)hotmail.com), Jul 20 2001
