This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055014 Sum of 5th powers of digits of n. 14
 0, 1, 32, 243, 1024, 3125, 7776, 16807, 32768, 59049, 1, 2, 33, 244, 1025, 3126, 7777, 16808, 32769, 59050, 32, 33, 64, 275, 1056, 3157, 7808, 16839, 32800, 59081, 243, 244, 275, 486, 1267, 3368, 8019, 17050, 33011, 59292, 1024, 1025, 1056, 1267, 2048 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Fixed points are listed in A052464. - M. F. Hasler, Apr 12 2015 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10000 K. Chikawa, K. Iséki, T. Kusakabe, and K. Shibamura, Computation of cyclic parts of Steinhaus problem for power 5, Acta Arithmetica 7 (1962), 253-254. [From Don Knuth, Sep 07 2015] FORMULA a(n) = Sum_{k>=1} (floor(n/10^k) - 10*floor(n/10^(k+1)))^5. - Hieronymus Fischer, Jun 25 2007 a(10n+k) = a(n) + k^5, 0 <= k < 10. - Hieronymus Fischer, Jun 25 2007 MAPLE A055014 := proc(n)    add(d^5, d=convert(n, base, 10)) ; end proc: # R. J. Mathar, Jul 08 2012 MATHEMATICA Total/@(IntegerDigits[Range[50]]^5)  (* Harvey P. Dale, Jan 22 2011 *) Table[Sum[DigitCount[n][[i]] i^5, {i, 9}], {n, 0, 45}] (* Bruno Berselli, Feb 01 2013 *) PROG (MAGMA) [0] cat [&+[d^5: d in Intseq(n)]: n in [1..45]]; // Bruno Berselli, Feb 01 2013 (PARI) A055014(n)=sum(i=1, #n=digits(n), n[i]^5) \\ M. F. Hasler, Apr 12 2015 CROSSREFS Cf. A003132, A055012, A055013. Cf. A007953, A055017, A076313, A076314. Cf. A052464. Sequence in context: A017674 A184979 A257855 * A000584 A050752 A153159 Adjacent sequences:  A055011 A055012 A055013 * A055015 A055016 A055017 KEYWORD base,nonn AUTHOR Henry Bottomley, May 31 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 16:46 EDT 2019. Contains 328373 sequences. (Running on oeis4.)