login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054973 Number of numbers whose divisors sum to n. 30
1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 2, 1, 1, 1, 0, 0, 2, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 1, 2, 2, 0, 0, 0, 1, 0, 1, 1, 1, 0, 3, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 2, 0, 2, 1, 0, 0, 3, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 5, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 1, 0, 1, 0, 0, 4, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,12

COMMENTS

a(n) = frequency of values n in A000203(m), where A000203(m) = sum of divisors of m. a(n) >= 1 for such n that A175192(n) = 1, a(n) >= 1 if A000203(m) = n for any m. a(n) = 0 for such n that A175192(n) = 0, a(n) = 0 if A000203(m) = n has no solution. - Jaroslav Krizek, Mar 01 2010

First occurrence of k: 2, 1, 12, 24, 96, 72, ..., = A007368. - Robert G. Wilson v, May 14 2014

LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000

EXAMPLE

a(12)=2 since 11 has factors 1 and 11 with 1+11=12 and 6 has factors 1, 2, 3 and 6 with 1+2+3+6=12.

MATHEMATICA

nn = 105; t = Table[0, {nn}]; k = 1; While[k < 6 nn^(3/2)/Pi^2, d = DivisorSigma[1, k]; If[d < nn + 1, t[[d]]++]; k++]; t (* Robert G. Wilson v, May 14 2014 *)

PROG

(PARI) a(n)=v = vector(0); for (i = 1, n, if (sigma(i) == n, v = concat(v, i)); ); #v; \\ Michel Marcus, Oct 22 2013

(PARI) a(n)=sum(k=1, n, sigma(k)==n) \\ Charles R Greathouse IV, Nov 12 2013

(PARI) first(n)=my(v=vector(n), t); for(k=1, n, t=sigma(n); if(t<=n, v[t]++)); v \\ Charles R Greathouse IV, Mar 08 2017

CROSSREFS

Cf. A000203, A002191, A007609.

Sequence in context: A089053 A214979 A068462 * A030351 A257994 A188921

Adjacent sequences:  A054970 A054971 A054972 * A054974 A054975 A054976

KEYWORD

nonn

AUTHOR

Henry Bottomley, May 16 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 10:38 EST 2017. Contains 294887 sequences.