login
A054928
Number of complementary pairs of directed graphs on n nodes. Also number of unlabeled digraphs with n nodes and an even number of arcs.
3
1, 2, 10, 114, 4872, 770832, 441038832, 896679948304, 6513978501814144, 170630215981070456064, 16261454692532635025585792, 5683372715412701087902846672384, 7334542846356464937798016155801130496, 35157828307617499760694672217473135511928832
OFFSET
1,2
LINKS
V. A. Liskovets, Some easily derivable sequences, J. Integer Sequences, 3 (2000), #00.2.2.
FORMULA
Average of A000273 and A003086.
MATHEMATICA
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[2*GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[v - 1];
b[n_] := (s = 0; Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!);
edges4[v_] := 4 Sum[Sum[GCD[v[[i]], v[[j]]], {j, 1, i - 1}], {i, 2, Length[v]}] + Sum[2 v[[i]] - 1, {i, 1, Length[v]}];
c[n_] := (s = 0; Do[s += permcount[2 p]*2^edges4[p]*If[OddQ[n], n *4^Length[p], 1], {p, IntegerPartitions[n/2 // Floor]}]; s/n!);
a[n_] := (b[n] + c[n])/2;
Array[a, 14] (* Jean-François Alcover, Aug 26 2019, using Andrew Howroyd's code for b=A000273 and c=A003086 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 24 2000
EXTENSIONS
More terms from Vladeta Jovovic, Jul 19 2000
Terms a(14) and beyond from Andrew Howroyd, Sep 17 2018
STATUS
approved