This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A054925 a(n) = ceiling(n*(n-1)/4). 9
 0, 0, 1, 2, 3, 5, 8, 11, 14, 18, 23, 28, 33, 39, 46, 53, 60, 68, 77, 86, 95, 105, 116, 127, 138, 150, 163, 176, 189, 203, 218, 233, 248, 264, 281, 298, 315, 333, 352, 371, 390, 410, 431, 452, 473, 495, 518, 541, 564, 588, 613, 638, 663, 689, 716, 743, 770, 798 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Number of edges in "median" graph - gives positions of largest entries in rows of table in A054924. Form the clockwise spiral starting 0,1,2,....; then A054925(n+1) interleaves 2 horizontal (A033951, A033991) and 2 vertical (A007742, A054552) branches. A bisection is A014848. - Paul Barry, Oct 08 2007 Consider the standard 4-dimensional Euclidean lattice. We take 1 step along the positive x-axis, 2 along the positive y-axis, 3 along the positive z-axis, 4 along the positive t-axis, and then back round to the x-axis. This sequence gives the floor of the Euclidean distance to the origin after n steps. - Jon Perry, Apr 16 2013 Jon Perry JavaScript code is explained by A238604. - Michael Somos, Mar 01 2014 Ceiling of the area under the polygon connecting the lattice points (n, floor(n/2)) from 0..n. - Wesley Ivan Hurt, Jun 09 2014 Ceiling of one-half of each triangular number. - Harvey P. Dale, Oct 03 2016 For n > 2, also the edge cover number of the (n-1)-triangular honeycomb queen graph. - Eric W. Weisstein, Jul 14 2017 LINKS Ivan Panchenko, Table of n, a(n) for n = 0..10000 Eric Weisstein's World of Mathematics, Edge Cover Number Index entries for linear recurrences with constant coefficients, signature (3,-4,4,-3,1). FORMULA Euler transform of length 6 sequence [ 2, 0, 1, 1, 0, -1]. - Michael Somos, Sep 02 2006 G.f.: x^2 * (x^2 - x + 1) / ((1 - x)^3 * (1 + x^2)) = x^2 * (1 - x^6) / ((1 - x)^2 * (1 - x^3) * (1 - x^4)). a(1-n) = a(n). A011848(n) = a(-n). - Michael Somos, Feb 11 2004 a(n + 4) = a(n) + 2*n + 3. - Michael Somos, Mar 01 2014 a(n+1) = floor( sqrt( A238604(n))). - Michael Somos, Mar 01 2014 a(n) = A011848(n) + A133872(n+2). - Wesley Ivan Hurt, Jun 09 2014 EXAMPLE a(6) = 8; ceiling(6*(6-1)/4) = ceiling(30/4) = 8. G.f. = x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 8*x^6 + 11*x^7 + 14*x^8 + 18*x^9 + 23*x^10 + ... MAPLE seq(ceil(binomial(n, 2)/2), n=0..57); # Zerinvary Lajos, Jan 12 2009 MATHEMATICA Table[Ceiling[(n^2 - n)/4], {n, 0, 20}] (* Wesley Ivan Hurt, Nov 01 2013 *) LinearRecurrence[{3, -4, 4, -3, 1}, {0, 0, 1, 2, 3}, 60] (* Vincenzo Librandi, Jul 14 2015 *) Join[{0}, Ceiling[#/2]&/@Accumulate[Range[0, 60]]] (* Harvey P. Dale, Oct 03 2016 *) PROG (PARI) {a(n) = ceil( n * (n-1)/4)}; /* Michael Somos, Feb 11 2004 */ (Sage) [ceil(binomial(n, 2)/2) for n in xrange(0, 58)] # Zerinvary Lajos, Dec 01 2009 (JavaScript) p=new Array(0, 0, 0, 0); for (a=0; a<100; a++) { p[a%4]+=a; document.write(Math.floor(Math.sqrt(p[0]*p[0]+p[1]*p[1]+p[2]*p[2]+p[3]*p[3]))+", "); } /* Jon Perry, Apr 16 2013 */ (MAGMA) [ Ceiling(n*(n-1)/4) : n in [0..50] ]; // Wesley Ivan Hurt, Jun 09 2014 (MAGMA) I:=[0, 0, 1, 2, 3]; [n le 5 select I[n] else 3*Self(n-1)-4*Self(n-2)+4*Self(n-3)-3*Self(n-4)+Self(n-5): n in [1..60]]; // Vincenzo Librandi, Jul 14 2015 CROSSREFS Cf. A054924, A054925 + A011848 = C(n, 2). Cf. A213172, A238604. Sequence in context: A078444 A225087 A194221 * A194248 A126097 A024611 Adjacent sequences:  A054922 A054923 A054924 * A054926 A054927 A054928 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, May 24 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 17 09:32 EST 2018. Contains 318193 sequences. (Running on oeis4.)