login
A054914
Number of labeled connected digraphs with n nodes such that complement is also connected.
1
1, 2, 44, 3572, 1005584, 1060875152, 4382913876704, 71987098738435232, 4721068803628864289024, 1237845578934919489219757312, 1298046978912816702510086132201984, 5444486716626952189940499391640815580672, 91343710775311761525117954724021374685703481344
OFFSET
1,2
LINKS
V. A. Liskovets, Some easily derivable sequences, J. Integer Sequences, 3 (2000), #00.2.2.
FORMULA
a(n) = 2*A003027(n) - A053763(n).
MAPLE
b:= n-> 2^(n^2-n):
g:= proc(n) option remember; local k; `if`(n=0, 1,
b(n)- add(k*binomial(n, k) *b(n-k)*g(k), k=1..n-1)/n)
end:
a:= n-> 2*g(n)-b(n):
seq (a(n), n=1..20); # Alois P. Heinz, Oct 21 2012
MATHEMATICA
nn=20; g=Sum[2^(2Binomial[n, 2])x^n/n!, {n, 0, nn}];
Drop[Range[0, nn]!CoefficientList[Series[2(Log[g]+1)-g, {x, 0, nn}], x], 1] (* Geoffrey Critzer, Oct 21 2012 *)
PROG
(Magma)
m:=30;
f:= func< x | (&+[2^(n*(n-1))*x^n/Factorial(n): n in [0..m+3]]) >;
R<x>:=PowerSeriesRing(Rationals(), m);
Coefficients(R!(Laplace( 1 + 2*Log(f(x)) - f(x) ))); // G. C. Greubel, Apr 28 2023
(SageMath)
m=30
def f(x): return sum(2^(n*(n-1))*x^n/factorial(n) for n in range(m+4))
def A054914_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( 2 + 2*log(f(x)) - f(x) ).egf_to_ogf().list()
a=A054914_list(40); a[1:] # G. C. Greubel, Apr 28 2023
CROSSREFS
Sequence in context: A054732 A161722 A290879 * A329021 A275307 A356484
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 23 2000
EXTENSIONS
More terms from Vladeta Jovovic, Jul 17 2000
STATUS
approved