login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054883 Number of walks of length n along the edges of a dodecahedron between two opposite vertices. 1
0, 0, 0, 0, 0, 6, 12, 84, 192, 882, 2220, 8448, 22704, 78078, 218988, 710892, 2048256, 6430794, 18837516, 58008216, 171619248, 522598230, 1555243404, 4705481220, 14051590080, 42357719586, 126740502252, 381253030704, 1142062255152, 3431411494062 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (2,10,-16,-25,30).

FORMULA

G.f.: -1/5-1/4/(t-1)-1/20/(3*t-1)+1/5/(2*t+1)+3/10/(5*t^2-1).

a(n) = (5+3^n+(-1)^n*2^(n+2)-3*(1+(-1)^n)*sqrt(5)^n)/20 for n>0.

G.f.: -6*x^5 / ((x-1)*(2*x+1)*(3*x-1)*(5*x^2-1)). - Colin Barker, Dec 21 2014

PROG

(PARI) concat([0, 0, 0, 0, 0], Vec(-6*x^5/((x-1)*(2*x+1)*(3*x-1)*(5*x^2-1)) + O(x^100))) \\ Colin Barker, Dec 21 2014

CROSSREFS

Sequence in context: A305058 A220232 A196253 * A005402 A128953 A181597

Adjacent sequences:  A054880 A054881 A054882 * A054884 A054885 A054886

KEYWORD

nonn,easy

AUTHOR

Paolo Dominici (pl.dm(AT)libero.it), May 23 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 04:19 EDT 2019. Contains 322237 sequences. (Running on oeis4.)