The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A054855 Number of ways to tile a 5 X n area with 1 X 1 and 2 X 2 tiles. 9
 1, 1, 8, 21, 93, 314, 1213, 4375, 16334, 59925, 221799, 817280, 3018301, 11134189, 41096528, 151643937, 559640289, 2065192514, 7621289593, 28124714395, 103789150046, 383013144129, 1413437041011, 5216013647648, 19248692843977 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS S. Heubach, Tiling an m-by-n area with squares of size up to k-by-k (m<=5), Congressus Numerantium 140 (1999), 43-64. R. J. Mathar, Tiling nxm rectangles with 1 X 1 and s X s squares arXiv:1609.03964 [math.CO], 2016. Index entries for linear recurrences with constant coefficients, signature (2,7,-2,-3). FORMULA a(n) = b(1)a(n-1)+b(2)a(n-2)+...+b(n)a(0), where a(0)=a(1)=1 and b(1)=1, b(2)=7, b(n)=F(n+1)of A000045 (Fibonacci numbers) for n>2. a(n) = 2*a(n-1) + 7*a(n-2) - 2*a(n-3) - 3*a(n-4). - Keith Schneider (kschneid(AT)bulldog.unca.edu), Apr 02 2006 G.f.: (1-x-x^2)/(1-2*x-7*x^2+2*x^3+3*x^4). [R. J. Mathar, Nov 02 2008] EXAMPLE a(2)=8 as there is one tiling of a 5 X 2 area with only 1 X 1 tiles, 4 tilings with exactly one 2 X 2 tile and 3 tilings with exactly two 2 X 2 tiles. MATHEMATICA f[{A_, B_}] := Module[{til = A, basic = B}, {Flatten[Append[til, ListConvolve[A, B]]], AppendTo[basic, 2 Fibonacci[Length[B] + 2]]}]; NumOfTilings[n_] := Nest[f, {{1, 1}, {1, 7}}, n - 2][[1]] NumOfTilings[30] CROSSREFS Cf. A054854, A000045. Column k=5 of A245013. Sequence in context: A275185 A264238 A188700 * A220611 A297340 A220580 Adjacent sequences:  A054852 A054853 A054854 * A054856 A054857 A054858 KEYWORD easy,nonn AUTHOR Silvia Heubach (silvi(AT)cine.net), Apr 21 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 26 12:19 EST 2020. Contains 338639 sequences. (Running on oeis4.)