login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054855 Number of ways to tile a 5 X n area with 1 X 1 and 2 X 2 tiles. 9
1, 1, 8, 21, 93, 314, 1213, 4375, 16334, 59925, 221799, 817280, 3018301, 11134189, 41096528, 151643937, 559640289, 2065192514, 7621289593, 28124714395, 103789150046, 383013144129, 1413437041011, 5216013647648, 19248692843977 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..24.

S. Heubach, Tiling an m-by-n area with squares of size up to k-by-k (m<=5), Congressus Numerantium 140 (1999), 43-64.

R. J. Mathar, Tiling nxm rectangles with 1x1 and sxs squares arXiv:1609.03964 (2016)

Index entries for linear recurrences with constant coefficients, signature (2,7,-2,-3).

FORMULA

a(n) = b(1)a(n-1)+b(2)a(n-2)+...+b(n)a(0), where a(0)=a(1)=1 and b(1)=1, b(2)=7, b(n)=F(n+1)of A000045 (Fibonacci numbers) for n>2

a(n) = 2*a(n-1) + 7*a(n-2) - 2*a(n-3) - 3*a(n-4) - Keith Schneider (kschneid(AT)bulldog.unca.edu), Apr 02 2006

G.f.: (1-x-x^2)/(1-2*x-7*x^2+2*x^3+3*x^4). [From R. J. Mathar, Nov 02 2008]

EXAMPLE

a(2)=8 as there is one tiling of a 5 X 2 area with only 1 X 1 tiles, 4 tilings with exactly one 2 X 2 tile and 3 tilings with exactly two 2 X 2 tiles.

MATHEMATICA

f[{A_, B_}] := Module[{til = A, basic = B}, {Flatten[Append[til, ListConvolve[A, B]]], AppendTo[basic, 2 Fibonacci[Length[B] + 2]]}]; NumOfTilings[n_] := Nest[f, {{1, 1}, {1, 7}}, n - 2][[1]] NumOfTilings[30]

CROSSREFS

Cf. A054854, A000045.

Column k=5 of A245013.

Sequence in context: A275185 A264238 A188700 * A220611 A220580 A100903

Adjacent sequences:  A054852 A054853 A054854 * A054856 A054857 A054858

KEYWORD

easy,nonn

AUTHOR

Silvia Heubach (silvi(AT)cine.net), Apr 21 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified April 23 23:17 EDT 2017. Contains 285329 sequences.