%I #6 Jan 09 2017 14:05:40
%S 1,1425517,488332318973593,2050097572347809756992173309567231025,
%T 5692069548203528002388345621912105864448051297181,
%U 110119103236279775595641307904376916046305114442231488626999497,8272277679877096985422106245998459573120465051843356628384885298858447202350071888172185613016339661427405
%N As p runs through the primes == 1 mod 3, sequence gives Bernoulli(2p) - 1/6.
%C This is an integer by a theorem of Rado.
%D G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 120.
%Y Cf. A002476.
%K nonn,easy
%O 1,2
%A _N. J. A. Sloane_, May 15 2001