login
A054809
Second term of strong prime 5-tuples: p(m)-p(m-1) > p(m+1)-p(m) > p(m+2)-p(m+1) > p(m+3)-p(m+2).
3
1657, 1777, 1847, 1861, 1987, 2371, 2459, 2503, 2521, 3433, 3449, 4201, 4507, 5261, 5407, 5431, 6029, 6637, 7229, 7283, 7741, 7867, 7919, 8147, 8501, 9587, 9601, 11027, 11369, 11579, 11821, 12391, 13859, 14813, 15121, 15527, 16033, 16301
OFFSET
1,1
COMMENTS
Initial member of pairs of consecutive primes in A054805 (second of quadruples): The first 10^4 terms of that sequence yield over 2000 terms of this sequence. - M. F. Hasler, Oct 27 2018
LINKS
FORMULA
a(n) = nextprime(A054808(n)) = prevprime(A054810(n)), nextprime = A151800, prevprime = A151799; A054809 = {m = A054805(n) | nextprime(m) = A054805(n+1)}. - M. F. Hasler, Oct 27 2018
MATHEMATICA
spqQ[n_]:=Module[{difs=Differences[n]}, difs[[1]]>difs[[2]]> difs[[3]]> difs[[4]]]; Transpose[Select[Partition[Prime[ Range[2000]], 5, 1], spqQ]][[2]] (* Harvey P. Dale, May 06 2012 *)
CROSSREFS
Cf. A051634, A051635; A054800 .. A054803: members of balanced prime quadruples (= 4 consecutive primes in arithmetic progression); A054804 .. A054818: members of strong prime 4-tuples, 5-tuples, 6-tuples; A054819 .. A054840: members of weak prime 4-tuples, ..., 7-tuples.
Sequence in context: A251905 A251898 A250929 * A236042 A163273 A340923
KEYWORD
nonn
AUTHOR
Henry Bottomley, Apr 10 2000
EXTENSIONS
Corrected by Harvey P. Dale, May 06 2012
Edited and offset corrected to 1 by M. F. Hasler, Oct 27 2018
STATUS
approved