This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A054784 Integers n such that sigma(2n) - sigma(n) is a power of 2, where sigma is the sum of the divisors of n. 2
 1, 2, 3, 4, 6, 7, 8, 12, 14, 16, 21, 24, 28, 31, 32, 42, 48, 56, 62, 64, 84, 93, 96, 112, 124, 127, 128, 168, 186, 192, 217, 224, 248, 254, 256, 336, 372, 381, 384, 434, 448, 496, 508, 512, 651, 672, 744, 762, 768, 868, 889, 896, 992, 1016, 1024, 1302, 1344, 1488 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS If n is a squarefree product of Mersenne primes multiplied by a power of 2, then sigma(2n) - sigma(n) is a power of 2. The reverse is also true. All numbers in this sequence have this form. - Ivan Neretin, Aug 12 2016 LINKS Ivan Neretin, Table of n, a(n) for n = 1..10000 FORMULA Numbers n such that A000203(2*n) - A000203(n) = 2^w for some w. EXAMPLE For n=12, sigma(2n) = sigma(24) = 1 + 2 + 3 + 4 + 6 + 8 + 12 + 24 = 60 and sigma(n) = sigma(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28. So sigma(2n) - sigma(n) = 60 - 28 = 32 = 2^5 is a power of 2, and therefore 12 is in the sequence. - Michael B. Porter, Aug 15 2016 MAPLE N:= 10^6: # to get all terms <= N M:= select(isprime, [seq(2^i-1, i=select(isprime, [\$2..ilog2(N+1)]))]): R:= map(t -> seq(2^i*t, i=0..floor(log(N/t))), map(convert, combinat:-powerset(M), `*`)): sort(convert(R, list)); # Robert Israel, Aug 12 2016 MATHEMATICA Sort@Select[Flatten@Outer[Times, p2 = 2^Range[0, 11], Times @@ # & /@ Subsets@Select[p2 - 1, PrimeQ]], # <= Max@p2 &] (* Ivan Neretin, Aug 12 2016 *) Select[Range, IntegerQ[Log2[DivisorSigma[1, 2#]-DivisorSigma[1, #]]]&] (* Harvey P. Dale, Apr 23 2019 *) CROSSREFS Cf. A000203, A000668. Sequence in context: A277704 A082752 A023758 * A018585 A018399 A029748 Adjacent sequences:  A054781 A054782 A054783 * A054785 A054786 A054787 KEYWORD nonn AUTHOR Labos Elemer, May 22 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 13 18:57 EDT 2019. Contains 327981 sequences. (Running on oeis4.)