login
Number of inequivalent n X n matrices over GF(4) under action of dihedral group of the square D_4.
9

%I #10 Aug 16 2021 17:22:27

%S 1,4,55,34960,537157696,140738033618944,590295811483987148800,

%T 39614081257168338331296071680,42535295865117309120430975675097153536,

%U 730750818665451459102461990840694008379514814464,200867255532373784442745261867639247948787687313041365401600

%N Number of inequivalent n X n matrices over GF(4) under action of dihedral group of the square D_4.

%H Andrew Howroyd, <a href="/A054751/b054751.txt">Table of n, a(n) for n = 0..25</a>

%F a(n) = 1/8*(4^(n^2) + 2*4^(n^2/4) + 3*4^(n^2/2) + 2*4^((n^2+n)/2)) if n is even;

%F a(n) = 1/8*(4^(n^2) + 2*4^((n^2+3)/4) + 4^((n^2+1)/2) + 4*4^((n^2+n)/2)) if n is odd.

%t Table[If[EvenQ[n],(4^n^2+2*4^(n^2/4)+3*4^(n^2/2)+2*4^((n^2+n)/2))/8,(4^n^2+2*4^((n^2+3)/4)+4^((n^2+1)/2)+4*4^((n^2+n)/2))/8],{n,0,10}] (* _Harvey P. Dale_, Aug 16 2021 *)

%Y Column k=4 of A343097.

%Y Cf. A054247.

%K easy,nonn

%O 0,2

%A _Vladeta Jovovic_, May 15 2000

%E Terms a(10) and beyond from _Andrew Howroyd_, Apr 15 2021