This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A054724 Triangle of numbers of inequivalent Boolean functions of n variables with exactly k nonzero values (atoms) under action of complementing group. 3
 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 7, 7, 14, 7, 7, 1, 1, 1, 1, 15, 35, 140, 273, 553, 715, 870, 715, 553, 273, 140, 35, 15, 1, 1, 1, 1, 31, 155, 1240, 6293, 28861, 105183, 330460, 876525, 2020239, 4032015, 7063784, 10855425, 14743445, 17678835, 18796230 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 REFERENCES M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 143. LINKS G. C. Greubel, Table of n, a(n) for the first 10 rows, flattened FORMULA T(n,k) = 2^(-n)*C(2^n, k) if k is odd and 2^(-n)*(C(2^n, k) + (2^n-1)*C(2^(n-1), k/2)) if k is even. EXAMPLE [1, 1, 1], [1, 1, 3, 1, 1], [1, 1, 7, 7, 14, 7, 7, 1, 1], ... MATHEMATICA rows = 5; t[n_, k_?OddQ] := 2^-n*Binomial[2^n, k]; t[n_, k_?EvenQ] := 2^-n*(Binomial[2^n, k] + (2^n-1)*Binomial[2^(n-1), k/2]); Flatten[ Table[ t[n, k], {n, 1, rows}, {k, 0, 2^n}]] (* Jean-François Alcover, Nov 21 2011, after Vladeta Jovovic *) T[n_, k_]:= If[OddQ[k], Binomial[2^n, k]/2^n, 2^(-n)*(Binomial[2^n, k] + (2^n - 1)*Binomial[2^(n - 1), k/2])]; Table[T[n, k], {n, 1, 5}, {k, 0, 2^n}] //Flatten  (* G. C. Greubel, Feb 15 2018 *) CROSSREFS Row sums give A000231. Cf. A052265. Sequence in context: A124371 A147989 A119329 * A061494 A141901 A200473 Adjacent sequences:  A054721 A054722 A054723 * A054725 A054726 A054727 KEYWORD easy,nonn,nice,tabf AUTHOR Vladeta Jovovic, Apr 20 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 11:00 EST 2019. Contains 319351 sequences. (Running on oeis4.)