login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054687 a(n+1) = 1 + Sum_{k=0..n} binomial(n,k)*a(k)*a(n-k) for n >= 0 with a(0) = 1. 3
1, 2, 5, 19, 99, 653, 5187, 48117, 510271, 6088301, 80716427, 1177130893, 18727404639, 322769897573, 5990916997611, 119139798166245, 2527255556219167, 56960055683893853, 1359299747696197931, 34240584053654816797, 907911436336049691519, 25277557586594907583733, 737276033151104902965963 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..429

FORMULA

a(n) ~ n! / r^(n+1), where r = 0.7542714558461742549095127982603266798910769877... is the smallest positive real root of the equation (BesselJ(1, 2) - BesselJ(0, 2))*BesselY(0, 2*exp(r/2)) + BesselJ(0, 2*exp(r/2))*(BesselY(0, 2) - BesselY(1, 2)) = 0. - Vaclav Kotesovec, Mar 02 2014, updated Apr 26 2020

E.g.f. A(x) satisfies A'(x) = exp(x) + A(x)^2 with A(0) = 1. - Petros Hadjicostas, Apr 25 2020

E.g.f.: exp(x/2)*(BesselJ(2, 2)*BesselY(1, 2*exp(x/2)) - BesselJ(1, 2*exp(x/2)) * BesselY(2, 2)) / (BesselJ(2, 2)*BesselY(0, 2*exp(x/2)) - BesselJ(0, 2*exp(x/2)) * BesselY(2, 2)). - Vaclav Kotesovec, Apr 26 2020

EXAMPLE

a(5) = 1 + 1*a(0)*a(4) + 4*a(1)*a(3) + 6*a(2)*a(2) + 4*a(3)*a(1) + 1*a(4)*a(0) = 1 + 1*1*99 + 4*2*19 + 6*5*5 + 4*19*2 + 1*99*1 = 653.

MATHEMATICA

nmax=20; b = ConstantArray[0, nmax+2]; b[[1]]=1; Do[b[[n+2]] = 1 + Sum[Binomial[n, k]*b[[k+1]]*b[[n-k+1]], {k, 0, n}], {n, 0, nmax}]; b (* Vaclav Kotesovec, Mar 02 2014 *)

PROG

(PARI) lista(nn)={my(a=vector(nn)); a[1]=1; for(n=2, nn, a[n]= 1 + sum(k=0, n-2, binomial(n-2, k)*a[k+1]*a[n-k-1])); for(n=1, nn, print1(a[n], ", "))}; \\ Petros Hadjicostas, Jun 11 2020

CROSSREFS

Cf. A052886.

Sequence in context: A052866 A007003 A020117 * A076669 A093502 A009311

Adjacent sequences:  A054684 A054685 A054686 * A054688 A054689 A054690

KEYWORD

easy,nonn

AUTHOR

Leroy Quet, Apr 19 2000

EXTENSIONS

More terms from James A. Sellers, Apr 20 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 09:03 EST 2020. Contains 338944 sequences. (Running on oeis4.)