The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A054687 a(n+1) = 1 + Sum_{k=0..n} binomial(n,k)*a(k)*a(n-k) for n >= 0 with a(0) = 1. 3
 1, 2, 5, 19, 99, 653, 5187, 48117, 510271, 6088301, 80716427, 1177130893, 18727404639, 322769897573, 5990916997611, 119139798166245, 2527255556219167, 56960055683893853, 1359299747696197931, 34240584053654816797, 907911436336049691519, 25277557586594907583733, 737276033151104902965963 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..429 FORMULA a(n) ~ n! / r^(n+1), where r = 0.7542714558461742549095127982603266798910769877... is the smallest positive real root of the equation (BesselJ(1, 2) - BesselJ(0, 2))*BesselY(0, 2*exp(r/2)) + BesselJ(0, 2*exp(r/2))*(BesselY(0, 2) - BesselY(1, 2)) = 0. - Vaclav Kotesovec, Mar 02 2014, updated Apr 26 2020 E.g.f. A(x) satisfies A'(x) = exp(x) + A(x)^2 with A(0) = 1. - Petros Hadjicostas, Apr 25 2020 E.g.f.: exp(x/2)*(BesselJ(2, 2)*BesselY(1, 2*exp(x/2)) - BesselJ(1, 2*exp(x/2)) * BesselY(2, 2)) / (BesselJ(2, 2)*BesselY(0, 2*exp(x/2)) - BesselJ(0, 2*exp(x/2)) * BesselY(2, 2)). - Vaclav Kotesovec, Apr 26 2020 EXAMPLE a(5) = 1 + 1*a(0)*a(4) + 4*a(1)*a(3) + 6*a(2)*a(2) + 4*a(3)*a(1) + 1*a(4)*a(0) = 1 + 1*1*99 + 4*2*19 + 6*5*5 + 4*19*2 + 1*99*1 = 653. MATHEMATICA nmax=20; b = ConstantArray[0, nmax+2]; b[[1]]=1; Do[b[[n+2]] = 1 + Sum[Binomial[n, k]*b[[k+1]]*b[[n-k+1]], {k, 0, n}], {n, 0, nmax}]; b (* Vaclav Kotesovec, Mar 02 2014 *) PROG (PARI) lista(nn)={my(a=vector(nn)); a[1]=1; for(n=2, nn, a[n]= 1 + sum(k=0, n-2, binomial(n-2, k)*a[k+1]*a[n-k-1])); for(n=1, nn, print1(a[n], ", "))}; \\ Petros Hadjicostas, Jun 11 2020 CROSSREFS Cf. A052886. Sequence in context: A052866 A007003 A020117 * A076669 A093502 A009311 Adjacent sequences:  A054684 A054685 A054686 * A054688 A054689 A054690 KEYWORD easy,nonn AUTHOR Leroy Quet, Apr 19 2000 EXTENSIONS More terms from James A. Sellers, Apr 20 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 09:03 EST 2020. Contains 338944 sequences. (Running on oeis4.)