login
a(n) = smallest prime p = prime(k) such that gcd( prime(k+1) - prime(k), prime(k+2) - prime(k+1) ) is a multiple of 2n.
1

%I #7 Apr 30 2014 01:31:14

%S 3,89,47,1823,1627,199,5939,5591,15823,83117,259033,16763,365851,

%T 1074167,69593,1625027,2541289,255767,11772613,3312227,247099,

%U 23374859,25767389,3565931,21369059,15340943,6314393,59859131,101996837,4911251,70136597,166185431,12012677,198429983,247837313,23346737,298626077,1321272031,43607351,464208809

%N a(n) = smallest prime p = prime(k) such that gcd( prime(k+1) - prime(k), prime(k+2) - prime(k+1) ) is a multiple of 2n.

%F a(n)=Min{x : A057467(x) is a multiple of 2n}

%o (PARI) for(n=1,50,p=2: np=3: while((np-p)%(2*n)||(nextprime(np+2)-np)%(2*n),p=np: np=nextprime(np+2)): print1(p","))

%Y Different from A070018.

%K nonn

%O 1,1

%A _Jeff Burch_, Apr 18 2000

%E More terms from Larry Reeves (larryr(AT)acm.org), Nov 09 2000

%E Corrected and extended by _Ralf Stephan_, Feb 23 2004

%E More terms from _Olaf Voß_, Feb 17 2008