

A054643


Primes p(n) such that p(n)+p(n+1)+p(n+2) == 0 (mod 3).


4



3, 47, 151, 167, 199, 251, 257, 367, 503, 523, 557, 587, 601, 647, 727, 941, 971, 991, 1063, 1097, 1117, 1181, 1217, 1231, 1361, 1453, 1493, 1499, 1531, 1741, 1747, 1753, 1759, 1889, 1901, 1907, 2063, 2161, 2281, 2393, 2399, 2411, 2441, 2671, 2897, 2957
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The 2 differences of these 3 primes should be congruent of 6, except the first prime 3, for which 3+5+7=15 holds. Sequences like A047948, A052198 etc. are subsequences here.


LINKS

Zak Seidov, Table of n, a(n) for n = 1..1000


EXAMPLE

For p(242) = 1531, the sum is 4623, the mean is 1541 and the successive differences are 6a=12 or 6b=6 resp.


CROSSREFS

Cf. A034961, A034707, A024675, A052288, A047948, A052198.
A122535 is subsequence.
Sequence in context: A084295 A141850 A003551 * A122535 A058427 A142293
Adjacent sequences: A054640 A054641 A054642 * A054644 A054645 A054646


KEYWORD

nonn


AUTHOR

Labos Elemer, May 15 2000


STATUS

approved



