login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054522 Triangle T(n,k): T(n,k) = phi(k) if k divides n, T(n,k)=0 otherwise (n >= 1, 1<=k<=n). T(n,k) = number of elements of order k in cyclic group of order n. 21
1, 1, 1, 1, 0, 2, 1, 1, 0, 2, 1, 0, 0, 0, 4, 1, 1, 2, 0, 0, 2, 1, 0, 0, 0, 0, 0, 6, 1, 1, 0, 2, 0, 0, 0, 4, 1, 0, 2, 0, 0, 0, 0, 0, 6, 1, 1, 0, 0, 4, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 1, 1, 2, 2, 0, 2, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 1, 1, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,6

COMMENTS

T(n,1) = 1; T(n,n) = A000010(n).

LINKS

Reinhard Zumkeller, Rows n=1..100 of triangle, flattened

R. J. Mathar, Plots of cycle graphs of the finite groups up to order 36, (2015)

FORMULA

Sum (T(n,k): k = 1 .. n) = n. - Reinhard Zumkeller, Oct 18 2011

EXAMPLE

1;

1, 1;

1, 0, 2;

1, 1, 0, 2;

1, 0, 0, 0, 4;

1, 1, 2, 0, 0, 2;

1, 0, 0, 0, 0, 0, 6;

1, 1, 0, 2, 0, 0, 0, 4;

1, 0, 2, 0, 0, 0, 0, 0, 6;

MAPLE

A054522 := proc(n, k)

    if modp(n, k) = 0 then

        numtheory[phi](k) ;

    else

        0;

    end if;

end proc:

seq(seq(A054522(n, k), k=1..n), n=1..15) ; # R. J. Mathar, Aug 06 2016

MATHEMATICA

t[n_, k_] /; Divisible[n, k] := EulerPhi[k]; t[_, _] = 0; Flatten[Table[t[n, k], {n, 1, 14}, {k, 1, n}]] (* Jean-Fran├žois Alcover, Nov 25 2011 *)

Flatten[Table[If[Divisible[n, k], EulerPhi[k], 0], {n, 15}, {k, n}]] (* Harvey P. Dale, Feb 27 2012 *)

PROG

(PARI) T(n, k)=if(k<1 || k>n, 0, if(n%k, 0, eulerphi(k)))

(Haskell)

a054522 n k = a054522_tabl !! (n-1) !! (k-1)

a054522_tabl = map a054522_row [1..]

a054522_row n = map (\k -> if n `mod` k == 0 then a000010 k else 0) [1..n]

-- Reinhard Zumkeller, Oct 18 2011

CROSSREFS

Cf. A054521.

Sequence in context: A035183 A178101 A324831 * A110250 A065252 A115211

Adjacent sequences:  A054519 A054520 A054521 * A054523 A054524 A054525

KEYWORD

nonn,tabl,nice,easy

AUTHOR

N. J. A. Sloane, Apr 09 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 15 22:10 EDT 2019. Contains 327088 sequences. (Running on oeis4.)