login
A054522
Triangle T(n,k): T(n,k) = phi(k) if k divides n, T(n,k)=0 otherwise (n >= 1, 1<=k<=n). T(n,k) = number of elements of order k in cyclic group of order n.
25
1, 1, 1, 1, 0, 2, 1, 1, 0, 2, 1, 0, 0, 0, 4, 1, 1, 2, 0, 0, 2, 1, 0, 0, 0, 0, 0, 6, 1, 1, 0, 2, 0, 0, 0, 4, 1, 0, 2, 0, 0, 0, 0, 0, 6, 1, 1, 0, 0, 4, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 1, 1, 2, 2, 0, 2, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 1, 1, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0
OFFSET
1,6
COMMENTS
T(n,1) = 1; T(n,n) = A000010(n).
This triangle is the transpose of the upper triangular array U in the LU decomposition of the square array A003989. - Peter Bala, Oct 15 2023
FORMULA
Sum (T(n,k): k = 1 .. n) = n. - Reinhard Zumkeller, Oct 18 2011
EXAMPLE
1;
1, 1;
1, 0, 2;
1, 1, 0, 2;
1, 0, 0, 0, 4;
1, 1, 2, 0, 0, 2;
1, 0, 0, 0, 0, 0, 6;
1, 1, 0, 2, 0, 0, 0, 4;
1, 0, 2, 0, 0, 0, 0, 0, 6;
MAPLE
A054522 := proc(n, k)
if modp(n, k) = 0 then
numtheory[phi](k) ;
else
0;
end if;
end proc:
seq(seq(A054522(n, k), k=1..n), n=1..15) ; # R. J. Mathar, Aug 06 2016
MATHEMATICA
t[n_, k_] /; Divisible[n, k] := EulerPhi[k]; t[_, _] = 0; Flatten[Table[t[n, k], {n, 1, 14}, {k, 1, n}]] (* Jean-François Alcover, Nov 25 2011 *)
Flatten[Table[If[Divisible[n, k], EulerPhi[k], 0], {n, 15}, {k, n}]] (* Harvey P. Dale, Feb 27 2012 *)
PROG
(PARI) T(n, k)=if(k<1 || k>n, 0, if(n%k, 0, eulerphi(k)))
(Haskell)
a054522 n k = a054522_tabl !! (n-1) !! (k-1)
a054522_tabl = map a054522_row [1..]
a054522_row n = map (\k -> if n `mod` k == 0 then a000010 k else 0) [1..n]
-- Reinhard Zumkeller, Oct 18 2011
CROSSREFS
Sequence in context: A035183 A178101 A324831 * A110250 A065252 A115211
KEYWORD
nonn,tabl,nice,easy
AUTHOR
N. J. A. Sloane, Apr 09 2000
STATUS
approved