|
|
A054490
|
|
Expansion of (1+5*x)/(1-6*x+x^2).
|
|
17
|
|
|
1, 11, 65, 379, 2209, 12875, 75041, 437371, 2549185, 14857739, 86597249, 504725755, 2941757281, 17145817931, 99933150305, 582453083899, 3394785353089, 19786259034635, 115322768854721, 672150354093691, 3917579355707425, 22833325780150859
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
A Pellian-related second-order recursive sequence.
Third binomial transform of 1,8,8,64,64,512. - Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009
Binomial transform of A164607. - R. J. Mathar, Oct 26 2011
Pisano period lengths: 1, 1, 4, 2, 6, 4, 3, 2, 12, 6, 12, 4, 14, 3, 12, 2, 8, 12, 20, 6, ... - R. J. Mathar, Aug 10 2012
From Wolfdieter Lang, Feb 26 2015: (Start)
This sequence gives all positive solutions x = x1 = a(n) of the first class of the (generalized) Pell equation x^2 - 2*y^2 = -7. For the corresponding y1 terms see 2*A038723(n). All positive solutions of the second class are given by (x2(n), y2(n)) = (A255236(n), A038725(n+1)), n >= 0. See (A254938(1), 2*A255232(1)) for the fundamental solution (1, 2) of the first class. See the Nagell reference, Theorem 111, p. 210, Theorem 110, p. 208, Theorem 108a, pp. 206-207.
This sequence gives also all positive solutions y = y1 of the first class of the Pell equation x^2 - 2*y^2 = 14. The corresponding solutions x1 are given in 4*A038723. This follows from the preceding comment. (End)
From Wolfdieter Lang, Mar 19 2015: (Start)
a(0) = -(2*A038761(0) - A038762(0)), a(n) = 2*A253811((n-1) + A101386(n-1), for n >= 1.
This follows from the general trivial fact that if X^2 - D*Y^2 = N (X, Y positive integers, D > 1, not a square, and N a non-vanishing integer) then x:= D*Y +/- X and y:= Y +/- X (correlated signs) satisfy x^2 - D*y^2 = -(D-1)*N. with integers x and y. Here D = 2 and N = 7. (End)
|
|
REFERENCES
|
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N. Y., 1964, pp. 122-125, 194-196.
T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964.
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..1000
I. Adler, Three Diophantine equations - Part II, Fib. Quart., 7 (1969), pp. 181-193.
Seyed Hassan Alavi, Ashraf Daneshkhah, Cheryl E Praeger, Symmetries of biplanes, arXiv:2004.04535 [math.GR], 2020. See y(n) in Lemma 7.9 p. 21.
E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242.
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (6,-1).
Index entries for sequences related to Chebyshev polynomials.
|
|
FORMULA
|
a(n) = 6*a(n-1) - a(n-2) for n>1, a(0)=1, a(1)=11.
a(n) = sqrt(8*A038723(n)^2 - 7).
a(n) = (11*((3+2*sqrt(2))^n - (3-2*sqrt(2))^n) - ((3+2*sqrt(2))^(n-1) - (3-2*sqrt(2))^(n-1)))/(4*sqrt(2)).
a(n) = 11*S(n, 6) + 5*S(n-1, 6), n >= 0, with Chebyshev's polynomials S(n, x) (A049310) evaluated at x=6: S(n, 6) = A001109(n-1). See the g.f. and the Pell equation comments above. - Wolfdieter Lang, Feb 26 2015
a(n) = 2*A253811(n-1) + A101386(n-1), for n >= 1. See the Mar 19 2015 comment above. - Wolfdieter Lang, Mar 19 2015
From G. C. Greubel, Jan 20 2020: (Start)
a(n) = Pell(2*n+1) + 3*Pell(2*n).
a(n) = ChebyshevU(n,3) + 5*ChebyshevU(n-1,3).
E.g.f.: exp(3*x)*( cosh(2*sqrt(2)*x) + 2*sqrt(2)*sinh(2*sqrt(2)*x) ). (End)
|
|
EXAMPLE
|
n = 2: sqrt(8*23^2-7) = 65.
2*19 + 27 = 65. - Wolfdieter Lang, Mar 19 2015
|
|
MAPLE
|
a[0]:=1: a[1]:=11: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n], n=0..30); # Zerinvary Lajos, Jul 26 2006
|
|
MATHEMATICA
|
CoefficientList[Series[(1+5x)/(1-6x+x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Mar 20 2015 *)
LinearRecurrence[{6, -1}, {1, 11}, 30] (* G. C. Greubel, Jul 26 2018 *)
|
|
PROG
|
(MAGMA) I:=[1, 11]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 20 2015
(PARI) my(x='x+O('x^30)); Vec((1+5*x)/(1-6*x+x^2)) \\ G. C. Greubel, Jul 26 2018
(Sage) [lucas_number1(2*n+1, 2, -1) + 3*lucas_number1(2*n, 2, -1) for n in (0..30)] # G. C. Greubel, Jan 20 2020
(GAP) a:=[1, 11];; for n in [3..30] do a[n]:=6*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 20 2020
|
|
CROSSREFS
|
Cf. A000129, A001109, A038723, A038725, A054488, A054489, A101386, A253811, A255236.
Sequence in context: A266765 A036601 A125321 * A126479 A260151 A139611
Adjacent sequences: A054487 A054488 A054489 * A054491 A054492 A054493
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Barry E. Williams, May 04 2000
|
|
EXTENSIONS
|
More terms from James A. Sellers, May 05 2000
More terms from Vincenzo Librandi, Mar 20 2015
|
|
STATUS
|
approved
|
|
|
|