%I #14 Oct 12 2023 01:39:38
%S 1,1,2,1,1,2,3,4,1,2,3,2,1,6,2,3,2,1,2,3,2,3,4,10,11,9,10,2,3,2,3,4,5,
%T 2,9,5,12,2,3,2,3,4,5,2,9,5,4,3,5,4,2,15,17,12,5,2,9,5,4,3,5,4,2,15,
%U 19,2,15,2,19,18,5,4,3,5,4,2,3,2,3,2,6,35,92,21,23,35,92,21,2,23,21,2
%N Denominator of lowest terms fraction from division of a highly composite number (1) by its predecessor.
%C Successive fractions are 2/1,2/1,3/2,2/1,2/1,3/2,4/3,5/4,2/1,3/2,4/3,3/2,2/1 a(n) is frequently A054483(n)-1, though not for example for n=26.
%H Michael De Vlieger, <a href="/A054482/b054482.txt">Table of n, a(n) for n = 2..10000</a>
%H Michael De Vlieger, <a href="/A054482/a054482.png">Logarithmic scatterplot of A054483(n)/a(n)</a>, n = 2..4096.
%H Michael De Vlieger, <a href="/A054482/a054482_1.png">Logarithmic scatterplot of A054483(n)/a(n)</a>, n = 2..779694, showing ratios for the entire Flammenkamp dataset of highly composite numbers.
%F a(n) = A002182(n-1)/A054481(n)
%e a(7)=2 since A002182(7)=36, A002182(6)=24 and 36/24=3/2 in lowest terms.
%t s = Import["https://oeis.org/A002182/b002182.txt", "Data"][[All, -1]]; Array[Denominator[s[[# + 1]]/s[[#]]] &, 120] ] (* _Michael De Vlieger_, Oct 11 2023 *)
%Y Cf. A002182, A054483.
%K easy,nonn,frac
%O 2,3
%A _Henry Bottomley_, Mar 31 2000
%E More terms from _Jud McCranie_, Jun 11 2005