login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054456 Convolution triangle of A000129(n) (Pell numbers). 17
1, 2, 1, 5, 4, 1, 12, 14, 6, 1, 29, 44, 27, 8, 1, 70, 131, 104, 44, 10, 1, 169, 376, 366, 200, 65, 12, 1, 408, 1052, 1212, 810, 340, 90, 14, 1, 985, 2888, 3842, 3032, 1555, 532, 119, 16, 1, 2378, 7813, 11784, 10716, 6482, 2709, 784, 152, 18, 1, 5741, 20892, 35223 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Bell-subgroup of the Riordan-group.

The G.f. for the row polynomials p(n,x) (increasing powers of x) is Pell(z)/(1-x*z*Pell(z)) with Pell(x)=1/(1-2*x-x^2) = g.f. for A000129(n+1) (Pell numbers without 0).

Column sequences are A000129(n+1), A006645(n+1), A054457(n) for m=0..2.

Riordan array (1/(1-2x-x^2),x/(1-2x-x^2)). - Paul Barry, Mar 15 2005

As a Riordan array, this factors as (1/(1-x^2),x/(1-x^2))*(1/(1-2x),x/(1-2x)), [abs(A049310) times square of A007318, or A038207]. - Paul Barry, Jul 28 2005

Coefficients of polynomials defined by P(x, 0) = 1; P(x, 1) = 2 - x; P(x, n) = (2 - x)*P(x, n - 1) + P(x, n - 2). - Roger L. Bagula, Mar 24 2008

Subtriangle (obtained by dropping the first column) of the triangle given by (0, 2, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 19 2013

T(n,k) is the number of words of length n over {0,1,2,3} having k letters 3 and avoiding runs of odd length of the letter 0. - Milan Janjic, Jan 14 2017

LINKS

Table of n, a(n) for n=0..57.

Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.

FORMULA

a(n, m) := ((n-m+1)*a(n, m-1) + (n+m)*a(n-1, m-1))/(4*m), n >= m >= 1, a(n, 0)= P(n+1)= A000129(n+1) (Pell numbers without P(0)), a(n, m) := 0 if n<m.

G.f. for column m: Pell(x)*(x*Pell(x))^m, m >= 0, with Pell(x) G.f. for A000129(n+1).

Number triangle T(n, k) with T(n, 0)=A000129(n), T(1, 1)=1, T(n, k)=0 if k>n, T(n, k)=T(n-1, k-1)+T(n-2, k)+2T(n-1, k) otherwise; T(n, k)=if(k<=n, sum{j=0..floor((n-k)/2), C(n-j, k)C(n-k-j, j)2^(n-2j-k)}; - Paul Barry, Mar 15 2005

Bivariate g.f. G(x,z) = 1/[1 - (2 + x)z - z^2]. G.f. for column k = z^k/(1 - 2z - z^2)^{k+1} (k>=0). - Emeric Deutsch, Aug 30 2015

T(n,k) = 2^(n-k)*C(n,k)*hypergeom([(k-n)/2,(k-n+1)/2],[-n],-1)) for n>=1. - Peter Luschny, Apr 25 2016

EXAMPLE

Fourth row polynomial (n=3): p(3,x)= 12+14*x+6*x^2+x^3

Triangle begins:

{1},

{2, 1},

{5, 4, 1},

{12, 14, 6, 1},

{29, 44, 27, 8, 1},

{70, 131,104, 44, 10, 1},

{169, 376, 366, 200, 65, 12, 1},

{408, 1052, 1212, 810, 340, 90, 14, 1},

{985, 2888, 3842, 3032, 1555, 532, 119, 16, 1},

{2378, 7813, 11784, 10716, 6482, 2709, 784, 152, 18, 1},

{5741, 20892, 35223, 36248, 25235, 12432, 4396, 1104, 189, 20, 1},

The triangle (0, 2, 1/2, -1/2, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, ...) begins:

1

0, 1

0, 2, 1

0, 5, 4, 1

0, 12, 14, 6, 1

0, 29, 44, 27, 8, 1 - Philippe Deléham, Feb 19 2013

MAPLE

G := 1/(1-(x+2)*z-z^2): Gser := simplify(series(G, z = 0, 18)): for n from 0 to 15 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 15 do seq(coeff(P[n], x, j), j = 0 .. n) end do; # yields sequence in triangular form - Emeric Deutsch, Aug 30 2015

T := (n, k) -> `if`(n=0, 1, 2^(n-k)*binomial(n, k)*hypergeom([(k-n)/2, (k-n+1)/2], [-n], -1)): seq(seq(simplify(T(n, k)), k=0..n), n=0..10); # Peter Luschny, Apr 25 2016

MATHEMATICA

P[x_, 0] := 1; P[x_, 1] := 2 - x; P[x_, n_] := P[x, n] = (2 - x) P[x, n - 1] + P[x, n - 2]; Table[Abs@ CoefficientList[P[x, n], x], {n, 0, 10}] // Flatten (* Roger L. Bagula, Mar 24 2008, edited by Michael De Vlieger, Apr 25 2018 *)

CROSSREFS

Cf. A000129. Row sums: A006190(n+1).

Cf. A129844.

Sequence in context: A110552 A129161 A103415 * A096164 A201166 A318942

Adjacent sequences:  A054453 A054454 A054455 * A054457 A054458 A054459

KEYWORD

easy,nonn,tabl

AUTHOR

Wolfdieter Lang, Apr 27 2000 and May 08 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 26 14:18 EDT 2019. Contains 321497 sequences. (Running on oeis4.)