login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054444 Even-indexed terms of A001629(n), n >= 2, (Fibonacci convolution). 7
1, 5, 20, 71, 235, 744, 2285, 6865, 20284, 59155, 170711, 488400, 1387225, 3916061, 10996580, 30737759, 85573315, 237387960, 656451269, 1810142185, 4978643596, 13661617195, 37409025455, 102238082976, 278920277425, 759695287349 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

8*a(n) is the number of Boolean (equivalently, lattice, modular lattice, distributive lattice) intervals of the form [s,w] in the Bruhat order on S_n, where s is a simple reflection. - Bridget Tenner, Jan 16 2020

LINKS

Jinyuan Wang, Table of n, a(n) for n = 0..1000

É. Czabarka, R. Flórez, and L. Junes, A Discrete Convolution on the Generalized Hosoya Triangle, Journal of Integer Sequences, 18 (2015), #15.1.6.

Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]

Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.

B. E. Tenner, Interval structures in the Bruhat and weak orders, arXiv:2001.05011 [math.CO], 2020.

FORMULA

a(n) = ((2*n+1)*F(2*(n+1)) + 4*(n+1)*F(2*n+1))/5, with F(n) = A000045(n) (Fibonacci numbers).

a(n)= A060920(n+1, 1).

G.f.: (1 - x + x^2)/(1 - 3*x + x^2)^2.

a(n) = Sum_{k=1..n+1} k*binomial(2*n-2*k+2, k). - Emeric Deutsch, Jun 11 2003

PROG

(PARI) a(n) = ((2*n+1)*fibonacci(2*(n+1))+4*(n+1)*fibonacci(2*n+1))/5; \\ Jinyuan Wang, Jul 28 2019

CROSSREFS

Cf. A000045, A001629, A001870, A060920.

Sequence in context: A054889 A056384 A036683 * A121332 A122695 A269914

Adjacent sequences:  A054441 A054442 A054443 * A054445 A054446 A054447

KEYWORD

easy,nonn

AUTHOR

Wolfdieter Lang, Apr 07 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 23 01:37 EST 2021. Contains 340384 sequences. (Running on oeis4.)