login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054432 a(n) = Sum_{1<=k<=n,GCD(k,n)=1} 2^(k-1). 14
1, 1, 3, 5, 15, 17, 63, 85, 219, 325, 1023, 1105, 4095, 5397, 13515, 21845, 65535, 70737, 262143, 333125, 890523, 1397077, 4194303, 4527185, 16236015, 22365525, 57521883, 88429845, 268435455, 272962625, 1073741823, 1431655765, 3679302363, 5726557525 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

For n>0, numbers formed by interpreting the reduced residue set of n (the rows of triangle A054431) as binary numbers.

LINKS

Robert Israel, Table of n, a(n) for n = 1..2658

FORMULA

M * V, where M = A054521 is an infinite lower triangular matrix and V = [1, 2, 4, 8...] is a vector. - Gary W. Adamson, Jan 13 2007

a(4*n) = (2^(2*n) + 1)*a(2*n) [think how the reduced residue set of the numbers of the form 4n are formed]

For all primes p and integers e > 1, A054432(p^e) = A019320(p^e)*(((2^(p^(e-1)))-1)* ((2^(p-1))-1))/((2^p)-1).

a(n-1) = Sum_{k=1..n, gcd(n, k) = 1} 2^(k-1). - Vladeta Jovovic, Aug 15 2002

EXAMPLE

For n=6 we have k = 1 and 5 and then 2^0 + 2^4 = 17 = a(6).

MAPLE

rrs2bincode := proc(n) local i, z; z := 0; for i from 1 to n-1 do z := z*2; if (1 = igcd(n, i)) then z := z + 1; fi; od; RETURN(z); end;

MATHEMATICA

f[n_] := Sum[2^k, {k, Select[ Range@ n, GCD[#, n] == 1 &] - 1}]; Array[f, 35] (* Robert G. Wilson v, Jul 21 2014 *)

PROG

(PARI) a(n) = sum(k=1, n, if (gcd(k, n)==1, 2^(k-1), 0)); \\ Michel Marcus, Jul 20 2014

(PARI) a(n) = subst(Polrev(vector(n, i, gcd(n, i)==1)), x, 2); \\ Michel Marcus, Jul 21 2014

CROSSREFS

Cf. A054431, A054433, A001317, A054521.

Sequence in context: A053576 A197818 A077406 * A016043 A077403 A002962

Adjacent sequences:  A054429 A054430 A054431 * A054433 A054434 A054435

KEYWORD

nonn

AUTHOR

Antti Karttunen

EXTENSIONS

Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar

More terms from Michel Marcus, Jul 20 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 21:15 EST 2017. Contains 295919 sequences.