login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054431 Array read by antidiagonals: T(x, y) tells whether (x, y) are coprime (1) or not (0), where (x, y) = (1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), ... 17
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

There are nontrivial infinite paths of 1's in this sequence, moving only 1 step down or to the right at each step. Starting at (1,1), move down to (2,1), then (3,1), ..., (13,1). Then move right to (13,2), (13,3), ..., (13,11). From this point, alternate moving down to the next prime row, and right to the next prime column. - Franklin T. Adams-Watters, May 27 2014

LINKS

Table of n, a(n) for n=1..105.

FORMULA

T(n, k)=T(n, k-n) + T(n-k, k) starting with T(n, k)=0 if n or k are nonpositive and T(1, 1)=1. T(n, k) = A054521(n, k) if n>=k, = A054521(k, n) if n<=k. Antidiagonal sums are phi(n) = A000010(n). - Henry Bottomley, May 14 2002

As a triangular array for n>=1, 1<=k<=n, T(n,k) = |K(n-k+1|k)| where K(i|j) is the Kronecker symbol. - Peter Luschny, Aug 05 2012

EXAMPLE

Rows start:

  1, 1, 1, 1, 1, 1, ...;

  1, 0, 1, 0, 1, 0, ...;

  1, 1, 0, 1, 1, 0, ...;

  1, 0, 1, 0, 1, 0, ...;

  1, 1, 1, 1, 0, 1, ...;

  1, 0, 0, 0, 1, 0, ...;

MAPLE

reduced_residue_set_0_1_array := n -> one_or_zero(igcd(((n-((trinv(n)*(trinv(n)-1))/2))+1), ((((trinv(n)-1)*(((1/2)*trinv(n))+1))-n)+1) ));

one_or_zero := n -> `if`((1 = n), (1), (0)); # trinv given at A054425

A054431_row := n -> seq(abs(numtheory[jacobi](n-k+1, k)), k=1..n);

for n from 1 to 14 do A054431_row(n) od; # Peter Luschny, Aug 05 2012

MATHEMATICA

t[n_, k_] := Boole[CoprimeQ[n, k]]; Table[t[n-k+1, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 21 2012 *)

PROG

(Sage)

def A054431_row(n): return [abs(kronecker_symbol(n-k+1, k)) for k in (1..n)]

for n in (1..14): print A054431_row(n) # Peter Luschny, Aug 05 2012

CROSSREFS

Equal to A003989 with non-one values replaced with zeros.

Cf. A047999, A054432, A055088, A054521, A215200.

Sequence in context: A166282 A047999 A323378 * A164381 A106470 A106465

Adjacent sequences:  A054428 A054429 A054430 * A054432 A054433 A054434

KEYWORD

nonn,tabl

AUTHOR

Antti Karttunen

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 16 21:59 EST 2019. Contains 320200 sequences. (Running on oeis4.)