This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A054411 Numbers n such that sum(j, p_j) = sum(j, e_j) where prod(j, p_j^{e_j}) is the prime factorization of n. 17
 1, 4, 27, 48, 72, 108, 162, 320, 800, 1792, 2000, 3125, 3840, 5000, 5760, 6272, 8640, 9600, 10935, 12500, 12960, 14400, 18225, 19440, 21504, 21600, 21952, 24000, 29160, 30375, 31250, 32256, 32400, 36000, 43740, 45056, 48384, 48600, 50625 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Numbers for which the sum of distinct prime factors equals the sum of exponents in the prime factorization, A008472(n)=A001222(n). - Reinhard Zumkeller, Mar 08 2002 LINKS Giuseppe Coppoletta and Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 100 terms from G. Coppoletta) EXAMPLE 320 is included because 320 = 2^6 * 5^1 and 2+5 = 6+1. MATHEMATICA f[n_]:=Plus@@First/@FactorInteger[n]==Plus@@Last/@FactorInteger[n]; lst={}; Do[If[f[n], AppendTo[lst, n]], {n, 0, 3*8!}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 19 2010 *) max = 10^12; Sort@Reap[Sow@1; Do[p = Select[IntegerPartitions[se, All, Prime@ Range@ PrimePi@ se], Sort[#] == Union[#] &]; Do[ np = Length[f]; va = IntegerPartitions[se, {np}, Range[se]]; Do[pe = Permutations[v]; Do[z = Times @@ (f^e); If[z <= max, Sow@z], {e, pe}], {v, va}], {f, p}], {se, 2, Log2[max]}]][[2, 1]] (* Giovanni Resta, May 07 2016 *) PROG (PARI) for(n=1, 10^6, if(bigomega(n)==sumdiv(n, d, isprime(d)*d), print1(n, ", "))) (PARI) is(n)=my(f=factor(n)); sum(i=1, #f~, f[i, 1]-f[i, 2])==0 \\ Charles R Greathouse IV, Sep 08 2016 (Sage) def d(n):     v=factor(n)[:]; L=len(v); s0=sum(v[j][0] for j in range(L)); s1=sum(v[j][1] for j in range(L))     return s0-s1 [k for k in (1..100000) if d(k)==0] # Giuseppe Coppoletta, May 07 2016 CROSSREFS Cf. A054412, A068935, A068936, A068937, A068938. Sequence in context: A239283 A082872 A274854 * A051506 A033663 A218629 Adjacent sequences:  A054408 A054409 A054410 * A054412 A054413 A054414 KEYWORD nonn AUTHOR Leroy Quet, May 09 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 11:11 EDT 2019. Contains 328056 sequences. (Running on oeis4.)