login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054383 Number of (zeroless) pandigital fractions for 1/n. 11
0, 12, 2, 4, 12, 3, 7, 46, 3, 0, 0, 4, 3, 8, 2, 3, 27, 1, 2, 0, 0, 1, 3, 2, 0, 9, 4, 1, 2, 0, 0, 1, 0, 0, 5, 0, 1, 2, 0, 0, 0, 0, 1, 5, 0, 1, 0, 0, 0, 0, 0, 1, 4, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n) is also the number of k such that k and n*k, taken together, are zeroless pandigital. - Nathaniel Johnston, Jun 25-26 2011

There are 179540 nonzero terms in the sequence.  The largest n for which a(n) > 0 is 98765432 representing the pandigital fraction 1/98765432.  The largest a(n) is a(8) = 46. - Chai Wah Wu, May 23 2015

LINKS

Chai Wah Wu, Table of n, a(n) for n = 1..10000

Wolfram MathWorld, Pandigital Fraction

EXAMPLE

a(3)=2 since there are 2 such pandigital fractions for 1/3: 5823/17469 and 5832/17496.

PROG

(Python)

from itertools import permutations

l = {}

for d in permutations('123456789', 9):

....for i in range(8):

........s1, s2 = int(''.join(d[:i+1])), int(''.join(d[i+1:]))

........q, r = divmod(s1, s2)

........if not r:

............if q in l:

................l[q] += 1

............else:

................l[q] = 1

A054383_list = [0]*max(l)

for d in l:

....A054383_list[d-1] = l[d] # Chai Wah Wu, May 23 2015

CROSSREFS

Cf. A064160, A115927, A115929, A115930, A115931, A115932.

Sequence in context: A098781 A040142 A169855 * A036383 A107832 A322521

Adjacent sequences:  A054380 A054381 A054382 * A054384 A054385 A054386

KEYWORD

nonn,base

AUTHOR

Eric W. Weisstein

EXTENSIONS

More terms from Vit Planocka (planocka(AT)mistral.cz), Sep 21 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 01:30 EDT 2019. Contains 328038 sequences. (Running on oeis4.)