%I #23 Feb 08 2023 07:22:58
%S 0,-8,0,0,-2048,0,192,16384,28311552,0,0,-1179648,0,29686813949952,0,
%T -7680,67108864,-289910292480,5699868278390784,
%U -3039929748475084800000,0,0,-838860800,0,1094374709451030528,0,-37180135792929290696471347200000,0
%N Table of resultants for Hermite polynomials H_k(x) and H_n(x).
%H G. C. Greubel, <a href="/A054373/b054373.txt">Rows n=1..30 of triangle, flattened</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HermitePolynomial.html">Hermite Polynomial.</a>
%H <a href="/index/He#Hermite">Index entries for sequences related to Hermite polynomials</a>
%e {0},
%e {-8, 0},
%e {0, -2048, 0},
%e {192, 16384, 28311552, 0},
%e {0, -1179648, 0, 29686813949952, 0},
%e {-7680, 67108864, -289910292480, 5699868278390784, -3039929748475084800000, 0}
%t Flatten[Table[Resultant[HermiteH[n, x], HermiteH[k, x], x], {k, 20}, {n, k}]]
%o (PARI) T(n, k) = polresultant(polhermite(n), polhermite(k)); \\ _Michel Marcus_, Jul 10 2018
%K sign,easy,tabl
%O 1,2
%A _Eric W. Weisstein_