%I #11 Sep 08 2022 08:45:00
%S 5,440,16016,366080,6223360,85995520,1018716160,10711072768,
%T 102385254400,905301196800,7501067059200,58822597017600,
%U 439993025691648,3158924287016960,21879051958353920,146801380881858560
%N One half of tenth unsigned column of Lanczos triangle A053125 (decreasing powers).
%D C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
%D Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
%H G. C. Greubel, <a href="/A054332/b054332.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%F a(n) = 2^(2*n-1)*binomial(2*n+10, 9) = -A053125(n+9, 9)/2 = A054328(n)/2.
%F G.f.: (1+40*x+80*x^2)*(5+40*x+16*x^2)/(1-4*x)^10.
%t Table[2^(2*n-1)*Binomial[2*n+10,9], {n,0,20}] (* _G. C. Greubel_, Jul 22 2019 *)
%o (PARI) vector(20, n, n--; 2^(2*n-1)*binomial(2*n+10, 9)) \\ _G. C. Greubel_, Jul 22 2019
%o (Magma) [2^(2*n-1)*Binomial(2*n+10, 9): n in [0..20]]; // _G. C. Greubel_, Jul 22 2019
%o (Sage) [2^(2*n-1)*binomial(2*n+10, 9) for n in (0..20)] # _G. C. Greubel_, Jul 22 2019
%o (GAP) List([0..20], n-> 2^(2*n-1)*Binomial(2*n+10, 9)); # _G. C. Greubel_, Jul 22 2019
%Y Cf. A053125, A054328.
%K easy,nonn
%O 0,1
%A _Wolfdieter Lang_