%I #11 Sep 08 2022 08:45:00
%S 1,20,224,1920,14080,93184,573440,3342336,18677760,100925440,
%T 530579456,2726297600,13740539904,68115496960,332859965440,
%U 1606317768704,7666516623360,36232344109056,169737107537920,788899592929280
%N One quarter of fourth unsigned column of Lanczos' triangle A053125.
%D C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
%D Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
%H G. C. Greubel, <a href="/A054329/b054329.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (16,-96,256,-256).
%F a(n)= 4^(n-1)*binomial(2*n+4, 3)= -A053125(n+3, 3)/4 = A054322(n)/4.
%F G.f.: (1+4*x)/(1-4*x)^4.
%F E.g.f.: (3 + 48*x + 120*x^2 + 64*x^3)*exp(4*x)/3. - _G. C. Greubel_, Jul 22 2019
%t Table[4^(n-1)*Binomial[2*n+4, 3], {n,0,30}] (* _G. C. Greubel_, Jul 22 2019 *)
%o (PARI) vector(30, n, n--; 4^(n-1)*binomial(2*n+4,3)) \\ _G. C. Greubel_, Jul 22 2019
%o (Magma) [4^(n-1)*Binomial(2*n+4,3): n in [0..30]]; // _G. C. Greubel_, Jul 22 2019
%o (Sage) [4^(n-1)*binomial(2*n+4,3) for n in (0..30)] # _G. C. Greubel_, Jul 22 2019
%o (GAP) List([0..30], n-> 4^(n-1)*Binomial(2*n+4,3)); # _G. C. Greubel_, Jul 22 2019
%Y Cf. A054322, A053125.
%K easy,nonn
%O 0,2
%A _Wolfdieter Lang_