This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A054328 Tenth unsigned column of Lanczos triangle A053125 (decreasing powers). 2

%I

%S 10,880,32032,732160,12446720,171991040,2037432320,21422145536,

%T 204770508800,1810602393600,15002134118400,117645194035200,

%U 879986051383296,6317848574033920,43758103916707840,293602761763717120

%N Tenth unsigned column of Lanczos triangle A053125 (decreasing powers).

%D C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.

%D Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.

%H G. C. Greubel, <a href="/A054328/b054328.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (40, -720, 7680, -53760, 258048, -860160, 1966080, -2949120, 2621440, -1048576).

%F a(n) = 4^n*binomial(2*n+10, 9)= -A053125(n+9, 9) = 2* A054332(n).

%F G.f. 2*(1+40*x+80*x^2)*(5+40*x+16*x^2)/(1-4*x)^10.

%t CoefficientList[Series[2(1+40x+80x^2)(5+40x+16x^2)/(1-4x)^10,{x,0,20}],x] (* _Harvey P. Dale_, Feb 28 2011 *)

%t Table[4^n*Binomial[2*n+10, 9], {n,0,20}] (* _G. C. Greubel_, Jul 22 2019 *)

%o (PARI) vector(20, n, n--; 4^n*binomial(2*n+10,9)) \\ _G. C. Greubel_, Jul 22 2019

%o (MAGMA) [4^n*Binomial(2*n+10,9): n in [0..20]]; // _G. C. Greubel_, Jul 22 2019

%o (Sage) [4^n*binomial(2*n+10,9) for n in (0..20)] # _G. C. Greubel_, Jul 22 2019

%o (GAP) List([0..20], n-> 4^n*Binomial(2*n+10,9)); # _G. C. Greubel_, Jul 22 2019

%Y Cf. A053125, A054327, A054332.

%K nonn,easy

%O 0,1

%A _Wolfdieter Lang_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 01:41 EST 2019. Contains 329978 sequences. (Running on oeis4.)