This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A054320 G.f.: (1+x)/(1-10*x+x^2). 28

%I

%S 1,11,109,1079,10681,105731,1046629,10360559,102558961,1015229051,

%T 10049731549,99482086439,984771132841,9748229241971,96497521286869,

%U 955226983626719,9455772314980321,93602496166176491,926569189346784589

%N G.f.: (1+x)/(1-10*x+x^2).

%C Chebyshev's even-indexed U-polynomials evaluated at sqrt(3).

%C a(n)^2 is a star number (A003154).

%C a(n) = L(n,-10)*(-1)^n, where L is defined as in A108299; see also A072256 for L(n,+10). - _Reinhard Zumkeller_, Jun 01 2005

%C (sqrt(2)+sqrt(3))^(2*n+1)=a(n)*sqrt(2)+A138288(n)*sqrt(3); a(n)=A138288(n)+A001078(n). - _Reinhard Zumkeller_, Mar 12 2008

%C a(n) give the values of x solving: 3y^2 - 2x^2 = 1. Corresponding values of y are given by A072256(n+1). x + y = A001078(n+1). - _Richard R. Forberg_, Nov 21 2013

%C The aerated sequence (b(n))n>=1 = [1, 0, 9, 0, 71, 0, 559, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -8, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047. - _Peter Bala_, Mar 22 2015

%D Fink, Alex, Richard Guy, and Mark Krusemeyer. "Partitions with parts occurring at most thrice." Contributions to Discrete Mathematics 3.2 (2008), 76-114. See Section 13.

%H Andersen, K., Carbone, L. and Penta, D., <a href="https://pdfs.semanticscholar.org/8f0c/c3e68d388185129a56ed73b5d21224659300.pdf">Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields</a>, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/StarNumber.html">Star Number</a>

%H H. C. Williams and R. K. Guy, <a href="http://dx.doi.org/10.1142/S1793042111004587">Some fourth-order linear divisibility sequences</a>, Intl. J. Number Theory 7 (5) (2011) 1255-1277.

%H H. C. Williams and R. K. Guy, <a href="http://www.emis.de/journals/INTEGERS/papers/a17self/a17self.Abstract.html">Some Monoapparitic Fourth Order Linear Divisibility Sequences</a>, Integers, Volume 12A (2012) The John Selfridge Memorial Volume.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10,-1).

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%F (a(n)-1)^2+a(n)^2+(a(n)+1)^2=b(n)^2+(b(n)+1)^2=c(n), where b(n) is A031138 and c(n) is A007667

%F Any k in the sequence has the successor 5*k + 2sqrt{3(2*k^2 + 1)}. - _Lekraj Beedassy_, Jul 08 2002

%F a(n) = 10*a(n-1) - a(n-2); a(n)=(sqrt(6) - 2)/4*(5 + 2*sqrt(6))^n - (sqrt(6) + 2)/4*(5 - 2*sqrt(6))^n.

%F a(n) = U(2*(n-1), sqrt(3)) = S(n-1, 10) + S(n-2, 10) with Chebyshev's U(n, x) and S(n, x) := U(n, x/2) polynomials and S(-1, x) := 0. S(n, 10) = A004189(n+1), n>=0.

%F For all members x of the sequence, 6*x^2 + 3 is a square. Lim. n-> Inf. a(n)/a(n-1) = 5 + 2*sqrt(6) - _Gregory V. Richardson_, Oct 13 2002

%F a(n) = [ [(5+2*sqrt(6))^n - (5-2*sqrt(6))^n] + [(5+2*sqrt(6))^(n-1) - (5-2*sqrt(6))^(n-1)] / (4*sqrt(6)) - _Gregory V. Richardson_, Oct 13 2002

%F Let q(n, x)=sum(i=0, n, x^(n-i)*binomial(2*n-i, i)); then (-1)^n*q(n, -12)=a(n) - _Benoit Cloitre_, Nov 10 2002

%F a(n) = A001079(n) + 3*A001078(n). - _Reinhard Zumkeller_, Mar 12 2008

%F A054320(n) = A142238(2n) = A041006(2n)/2 = A041038(2n)/4 [From _M. F. Hasler_, Feb 14 2009]

%F a(n) = sqrt(A006061(n)). - _Zak Seidov_, Oct 22 2012

%F a(n) = sqrt((3* A072256(n)^2 - 1)/2).

%e a(1)^2=121 is the 5th star number (A003154).

%t q=12;s=0;lst={};Do[s+=n;If[Sqrt[q*s+1]==Floor[Sqrt[q*s+1]],AppendTo[lst,Sqrt[q*s+1]]],{n,0,9!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Apr 02 2009 *)

%t CoefficientList[Series[(1 + x) / (1 - 10 x + x^2), {x, 0, 33}], x] (* _Vincenzo Librandi_, Mar 22 2015 *)

%t a[c_, n_] := Module[{},

%t p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];

%t d := Numerator[Convergents[Sqrt[c], n p]];

%t t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];

%t Return[t];

%t ] (* Complement of A142238 *)

%t a[3/2, 20] (* _Gerry Martens_, Jun 07 2015 *)

%o (PARI) a(n)=if(n<1,0,subst(poltchebi(n)-poltchebi(n-1),x,5)/4)

%o (Sage) [(lucas_number2(n,10,1)-lucas_number2(n-1,10,1))/8 for n in xrange(1, 20)]# [_Zerinvary Lajos_, Nov 10 2009]

%o (MAGMA) I:=[1,11]; [n le 2 select I[n] else 10*Self(n-1)-Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Mar 22 2015

%Y A member of the family A057078, A057077, A057079, A005408, A002878, A001834, A030221, A002315, A033890, A057080, A057081, A054320, which are the expansions of (1+x) / (1-kx+x^2) with k = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. - _Philippe Deléham_, May 04 2004

%Y Cf. A003154, A006061, A031138, A007667, A004189.

%Y Cf. A138281. Cf. A100047.

%Y Cf. A142238.

%K easy,nonn,changed

%O 0,2

%A _Ignacio Larrosa Cañestro_, Feb 27 2000

%E Chebyshev comments from _Wolfdieter Lang_, Oct 31 2002

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 20 22:51 EST 2019. Contains 320362 sequences. (Running on oeis4.)