%I
%S 0,1,2,5,8,13,19,26,34,43,53,64,76,89,103,118,134,151,169,188,208,229,
%T 251,274,298,323,349,376,404,433,463,494,526,559,593,628,664,701,739,
%U 778,818,859,901,944,988,1033,1079,1126,1174,1223,1273
%N a(n) is n plus the minimum of the a(i)*a(ni) of the previous i=1..n1.
%C If in the Maple code "if n<=2 then n" was replaced by "if n<=1 then n", then the sequence would become the triangular numbers A000217. In general, if the Maple code was "if n<=k then n" for some given k >0 then a(n) would be n if n<=k, n+k(nk) if k<=n<=2k and n(n+1)/ 2k(k1) if 2k<=n.  _Henry Bottomley_, Mar 30 2001
%F For n>3: a(n) =(n^2+n4)/2 =A034856(n1) =A000217(n)2 =A000297(n3)A000297(n2). For n>4: a(n)=a(n1)+n.
%F G.f.: x*(x^2x+1)*(x^3x^21)/(x1)^3 [_R. J. Mathar_, Dec 09 2009]
%e a(3)=3+1*2=5, a(4)=4+2*2=8 since 2*2<1*5, a(5)=5+1*8=13 since 1*8<2*5.
%p A054254 := proc(n) local i,j; option remember; if n<=2 then n else j := 10^100; for i from 1 to n1 do if procname(i)*procname(ni) < j then j := procname(i)*procname(ni); end if; end do; n+j; fi; end proc;
%K nonn
%O 0,3
%A _N. J. A. Sloane_, May 04 2000
%E More specific name from _R. J. Mathar_, Dec 09 2009
