|
|
A054054
|
|
Smallest digit of n.
|
|
48
|
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 1, 2, 3, 3, 3, 3, 3, 3, 3, 0, 1, 2, 3, 4, 4, 4, 4, 4, 4, 0, 1, 2, 3, 4, 5, 5, 5, 5, 5, 0, 1, 2, 3, 4, 5, 6, 6, 6, 6, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(n) = 0 for almost all n. - Charles R Greathouse IV, Oct 02 2013
More precisely, a(n) = 0 asymptotically almost surely, i.e., except for a set of density 0: As the number of digits of n grows, the probability of having no zero digit goes to zero as 0.9^(length of n), although there are infinitely many counterexamples. - M. F. Hasler, Oct 11 2015
|
|
LINKS
|
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
|
|
FORMULA
|
a(A011540(n)) = 0; a(A052382(n)) > 0. - Reinhard Zumkeller, Apr 25 2012
a(n) = A262188(n,0). - Reinhard Zumkeller, Sep 14 2015
a(n) = 0 iff A007954(n) = 0. - M. F. Hasler, Oct 11 2015
a(n) = 9 - A054055(A061601(n)). - Robert Israel, Jul 07 2016
|
|
EXAMPLE
|
a(12) = 1 because 1 < 2.
|
|
MAPLE
|
seq(min(convert(n, base, 10)), n=0..100); # Robert Israel, Jul 07 2016
|
|
MATHEMATICA
|
A054054[n_]:=Min[IntegerDigits[n]]
|
|
PROG
|
(Haskell)
a054054 = f 9 where
f m x | x <= 9 = min m x
| otherwise = f (min m d) x' where (x', d) = divMod x 10
-- Reinhard Zumkeller, Jun 20 2012, Apr 25 2012
(PARI) A054054(n)=if(n, vecmin(digits(n))) \\ or: Set(digits(n))[1]. - M. F. Hasler, Jan 23 2013
|
|
CROSSREFS
|
Cf. A054055.
Cf. A061601, A011540, A052382, A262188.
Sequence in context: A004176 A085124 A252648 * A115353 A031298 A004428
Adjacent sequences: A054051 A054052 A054053 * A054055 A054056 A054057
|
|
KEYWORD
|
base,easy,nonn
|
|
AUTHOR
|
Henry Bottomley, Apr 29 2000
|
|
EXTENSIONS
|
Edited by M. F. Hasler, Oct 11 2015
|
|
STATUS
|
approved
|
|
|
|