login
tau(n+1) - tau(n) where n and n+1 have the same sum of divisors.
3

%I #17 Oct 27 2023 22:00:45

%S 0,2,-4,0,4,0,0,8,6,-4,-6,6,-8,-8,0,4,0,4,0,8,8,-8,0,-4,0,8,-8,0,-12,

%T 12,-8,8,0,-8,-8,-4,-12,24,-8,0,8,0,-8,-4,-8,-8,0,16,-4,-4,4,0,0,-28,

%U 0,0,-20,-4,24,0,-16,8,8,-8,-8,12,-16,0,-40,40,-8,8,0,0,0,40,-8,0,40

%N tau(n+1) - tau(n) where n and n+1 have the same sum of divisors.

%H Amiram Eldar, <a href="/A054003/b054003.txt">Table of n, a(n) for n = 1..10135</a> (from the b-file at A002961)

%F a(n) = A054002(n) - A053249(n).

%o (Magma) [#Divisors(n+1)-#Divisors(n):n in [1..5000000]| SumOfDivisors(n) eq SumOfDivisors(n+1)]; // _Marius A. Burtea_, Sep 07 2019

%Y Cf. A000005, A000203, A002961, A053249, A054002.

%K sign

%O 1,2

%A _Asher Auel_, Jan 12 2000

%E More terms from _Naohiro Nomoto_, Jun 23 2001