login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053987 Numerators of successive convergents to tan(1/2) using continued fraction 1/(2-1/(6-1/(10-1/(14-1/(18-1/(22-1/(26-1/30-...))))))). 5
1, 6, 59, 820, 14701, 322602, 8372951, 250865928, 8521068601, 323549740910, 13580568049619, 624382580541564, 31205548459028581, 1684475234207001810, 97668358035547076399, 6053753722969711734928, 399450077357965427428849, 27955451661334610208284502 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..200

S. Janson, A divergent generating function that can be summed and analysed analytically, Discrete Mathematics and Theoretical Computer Science; 2010, Vol. 12, No. 2, 1-22.

FORMULA

a(n) = Sum_{k=0..floor((n-1)/2)} (-1)^k*(2*n-2*k-1)!/((n-2*k-1)! * (2*k+1)!). - Benoit Cloitre, Jan 03 2006

E.g.f.: 1-cos(x*C(x)), C(x)=(1-sqrt(1-4*x))/(2*x) (A000108). - Vladimir Kruchinin, Aug 10 2010

From Peter Bala, Aug 01 2013, (Start)

a(n+1) = (4*n+2)*a(n) - a(n-1) with a(0) = 0 and a(1) = 1.

a(n) = Sum_{k = 0..floor((n-1)/2)} (-1)^k*4^(n-2*k-1)*(n-2*k-1)!*binomial(n-k-1, k)*binomial(n-k-1/2, k+1/2), see A058798. (End)

a(n) ~ sin(1/2) * 2^(2*n+1/2) * n^n / exp(n). - Vaclav Kotesovec, Feb 25 2014

a(n) = 4^n*Gamma(n+1/2)*hypergeometric([1/2-n/2,1-n/2], [3/2,1/2-n,1-n], -1/4)/sqrt(4*Pi). - Peter Luschny, Sep 10 2014

MAPLE

A053987 := n -> local k; add((-1)^k*(2*n-2*k-1)!/((n-2*k-1)!*(2*k+1)!), k = 0..floor((n-1)/2)); seq(A053987(n), n = 1..20); # G. C. Greubel, May 17 2020

MATHEMATICA

Rest[CoefficientList[Series[Sin[(1-Sqrt[1-4*x])/2]/Sqrt[1-4*x], {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Feb 25 2014 *)

PROG

(PARI) a(n)=sum(k=0, floor((n-1)/2), (-1)^k*(2*n-2*k-1)!/(n-2*k-1)!/(2*k+1)!) \\ Benoit Cloitre, Jan 03 2006

(Sage)

def A053987(n):

    return 4^n*gamma(n+1/2)*hypergeometric([1/2-n/2, 1-n/2], [3/2, 1/2-n, 1-n], -1/4)/sqrt(4*pi)

[round(A053987(n).n(100)) for n in (1..18)] # Peter Luschny, Sep 10 2014

(MAGMA)

A053987:= func< n| &+[(-1)^k*Factorial(2*n-2*k-1)/(Factorial(n-2*k-1)* Factorial(2*k+1)): k in [0..Floor((n-1)/2)]] >;

[A053987(n) : n in [1..20]]; // G. C. Greubel, May 17 2020

CROSSREFS

Cf. A001517, A053988, A058798.

Sequence in context: A089153 A075136 A024382 * A024270 A024271 A271964

Adjacent sequences:  A053984 A053985 A053986 * A053988 A053989 A053990

KEYWORD

nonn,frac,easy

AUTHOR

Vladeta Jovovic, Apr 03 2000

EXTENSIONS

a(16)-a(17) from Wesley Ivan Hurt, Feb 28 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 25 16:50 EST 2020. Contains 338625 sequences. (Running on oeis4.)