This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A053983 a(n) = (2*n-1)*a(n-1) - a(n-2), a(0)=a(1)=1. 7
 1, 1, 2, 9, 61, 540, 5879, 75887, 1132426, 19175355, 363199319, 7608010344, 174621038593, 4357917954481, 117489163732394, 3402827830284945, 105370173575100901, 3473812900148044788, 121478081331606466679, 4491215196369291222335, 175035914577070751204386 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Denominators of successive convergents to tan(1) using continued fraction 1/(1-1/(3-1/(5-1/(7-1/(9-1/(11-1/(13-1/15-...))))))). - Michael Somos, Aug 07 2000 Equals eigensequence of an infinite lower triangular matrix with (1, 3, 5,...) as the main diagonal and (-1, -1, -1,...) as the subdiagonal. - Gary W. Adamson, Apr 20 2009 LINKS G. C. Greubel, Table of n, a(n) for n = 0..400 FORMULA a(n) = -(-1)^n*A053984(-1-n). - Michael Somos, Aug 07 2000 E.g.f.: cos(1-sqrt(1-2*x))/sqrt(1-2*x). If a(0)=0, a(n)=0, 1, 1, 2, 9, 61, 540, 5879, 75887, 1132426... then e.g.f. = sin(1)*cos(sqrt(1-2*x))-cos(1)*sin(sqrt(1-2*x)). - Miklos Kristof, Jun 15 2005, corrected by Vaclav Kotesovec, Jul 31 2014 a(n) = Sum_{k=0..floor(n/2)} (-1)^k*2^(n-2*k)*(n-2*k)!*binomial(n-k,k) * binomial(n-k-1/2,k-1/2). Cf. A058798. - Peter Bala, Aug 01 2013 a(n) ~ cos(1) * 2^(n+1/2) * n^n / exp(n). - Vaclav Kotesovec, Jul 31 2014 a(n) = 2^n*Gamma(n+1/2)*hypergeometric([1/2-n/2, -n/2], [1/2, 1/2-n, -n], -1)/sqrt(Pi) for n >= 2. - Peter Luschny, Sep 10 2014 0 = a(n)*(+a(n+2)) + a(n+1)*(-a(n+1) + 2*a(n+2) - a(n+3)) + a(n+2)*(+a(n+2)) for all n in Z. - Michael Somos, Sep 11 2014 1/(2^n*n!) *  int_{x = 0..1} (1 - x^2)^n*cos(x) dx = a(n)*sin(1) - A053984(n)*cos(1). Hence A053984(n)/a(n) -> tan(1) as n -> infinity. - Peter Bala, Mar 06 2015 a(n) = SphericalBesselJ[0,1]*SphericalBesselJ[n,1] + SphericalBesselY[0,1]*SphericalBesselY[n,1]. - G. C. Greubel, May 10 2015 Sum_{n>0} a(n-1) t^n/n! = sin(1 - sqrt(1-2t)). - G. C. Greubel, May 10 2015 EXAMPLE a(10) = 363199319 because 1/(1-1/(3-1/(5-1/(7-1/(9-1/(11-1/(13-1/(15-1/(17-1/19))))))))) = 565649425/363199319. MAPLE E(x):=sin(1)*cos(sqrt(1-2*x))-cos(1)*sin(sqrt(1-2*x)): f[0]:=E(x): for n from 1 to 30 do f[n]:=diff(f[n-1], x) od: x:=0: for n from 1 to 30 do f[n]:=simplify(f[n]/(sin(1)^2+cos(1)^2)) od: seq(f[n], n=1..30); # Miklos Kristof, Jun 15 2005 MATHEMATICA RecurrenceTable[{a[0]==a[1]==1, a[n]==(2n-1)a[n-1]-a[n-2]}, a, {n, 20}] (* Harvey P. Dale, Dec 21 2011 *) CoefficientList[Series[Cos[1-Sqrt[1-2*x]]/Sqrt[1-2*x], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jul 31 2014 *) PROG (Sage) def A053983(n):     if n < 2: return 1     return 2^n*gamma(n+1/2)*hypergeometric([1/2-n/2, -n/2], [1/2, 1/2-n, -n], -1)/sqrt(pi) [round(A053983(n).n(100)) for n in (0..20)] # Peter Luschny, Sep 10 2014 (PARI) a(n)={if(n<2, 1, (2*n-1)*a(n-1)-a(n-2))} \\ Edward Jiang, Sep 10 2014 (PARI) {a(n) = my(a0, a1, s=n<0); if( n>-3 && n<1, return(n+1)); if( n<0, n=-1-n); a0=1-s; a1=1; for(k=2, n, a2 = (2*k-1)*a1 - a0; a0=a1; a1=a2); (-1)^(s*n) * a1}; /* Michael Somos, Sep 11 2014 */ (MAGMA) [1] cat [ n le 2 select n else (2*n-1)*Self(n-1)-Self(n-2): n in [1..25] ]; // Vincenzo Librandi, Mar 08 2015 CROSSREFS Cf. A053984, A058798. Sequence in context: A269460 A207649 A289713 * A192939 A107883 A088182 Adjacent sequences:  A053980 A053981 A053982 * A053984 A053985 A053986 KEYWORD easy,frac,nonn AUTHOR Vladeta Jovovic, Apr 02 2000 EXTENSIONS Additional comments from Michael Somos, Aug 23 2000 More terms from Miklos Kristof, Jun 15 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 15 20:47 EST 2019. Contains 319184 sequences. (Running on oeis4.)