login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053983 a(n) = (2*n-1)*a(n-1) - a(n-2), a(0)=a(1)=1. 7
1, 1, 2, 9, 61, 540, 5879, 75887, 1132426, 19175355, 363199319, 7608010344, 174621038593, 4357917954481, 117489163732394, 3402827830284945, 105370173575100901, 3473812900148044788, 121478081331606466679, 4491215196369291222335, 175035914577070751204386 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Denominators of successive convergents to tan(1) using continued fraction 1/(1-1/(3-1/(5-1/(7-1/(9-1/(11-1/(13-1/15-...))))))). - Michael Somos, Aug 07 2000

Equals eigensequence of an infinite lower triangular matrix with (1, 3, 5,...) as the main diagonal and (-1, -1, -1,...) as the subdiagonal. - Gary W. Adamson, Apr 20 2009

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..400

FORMULA

a(n) = -(-1)^n*A053984(-1-n). - Michael Somos, Aug 07 2000

E.g.f.: cos(1-sqrt(1-2*x))/sqrt(1-2*x). If a(0)=0, a(n)=0, 1, 1, 2, 9, 61, 540, 5879, 75887, 1132426... then e.g.f. = sin(1)*cos(sqrt(1-2*x))-cos(1)*sin(sqrt(1-2*x)). - Miklos Kristof, Jun 15 2005, corrected by Vaclav Kotesovec, Jul 31 2014

a(n) = Sum_{k=0..floor(n/2)} (-1)^k*2^(n-2*k)*(n-2*k)!*binomial(n-k,k) * binomial(n-k-1/2,k-1/2). Cf. A058798. - Peter Bala, Aug 01 2013

a(n) ~ cos(1) * 2^(n+1/2) * n^n / exp(n). - Vaclav Kotesovec, Jul 31 2014

a(n) = 2^n*Gamma(n+1/2)*hypergeometric([1/2-n/2, -n/2], [1/2, 1/2-n, -n], -1)/sqrt(Pi) for n >= 2. - Peter Luschny, Sep 10 2014

0 = a(n)*(+a(n+2)) + a(n+1)*(-a(n+1) + 2*a(n+2) - a(n+3)) + a(n+2)*(+a(n+2)) for all n in Z. - Michael Somos, Sep 11 2014

1/(2^n*n!) *  int_{x = 0..1} (1 - x^2)^n*cos(x) dx = a(n)*sin(1) - A053984(n)*cos(1). Hence A053984(n)/a(n) -> tan(1) as n -> infinity. - Peter Bala, Mar 06 2015

a(n) = SphericalBesselJ[0,1]*SphericalBesselJ[n,1] + SphericalBesselY[0,1]*SphericalBesselY[n,1]. - G. C. Greubel, May 10 2015

Sum_{n>0} a(n-1) t^n/n! = sin(1 - sqrt(1-2t)). - G. C. Greubel, May 10 2015

EXAMPLE

a(10) = 363199319 because 1/(1-1/(3-1/(5-1/(7-1/(9-1/(11-1/(13-1/(15-1/(17-1/19))))))))) = 565649425/363199319.

MAPLE

E(x):=sin(1)*cos(sqrt(1-2*x))-cos(1)*sin(sqrt(1-2*x)): f[0]:=E(x): for n from 1 to 30 do f[n]:=diff(f[n-1], x) od: x:=0: for n from 1 to 30 do f[n]:=simplify(f[n]/(sin(1)^2+cos(1)^2)) od: seq(f[n], n=1..30); # Miklos Kristof, Jun 15 2005

MATHEMATICA

RecurrenceTable[{a[0]==a[1]==1, a[n]==(2n-1)a[n-1]-a[n-2]}, a, {n, 20}] (* Harvey P. Dale, Dec 21 2011 *)

CoefficientList[Series[Cos[1-Sqrt[1-2*x]]/Sqrt[1-2*x], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jul 31 2014 *)

PROG

(Sage)

def A053983(n):

    if n < 2: return 1

    return 2^n*gamma(n+1/2)*hypergeometric([1/2-n/2, -n/2], [1/2, 1/2-n, -n], -1)/sqrt(pi)

[round(A053983(n).n(100)) for n in (0..20)] # Peter Luschny, Sep 10 2014

(PARI) a(n)={if(n<2, 1, (2*n-1)*a(n-1)-a(n-2))} \\ Edward Jiang, Sep 10 2014

(PARI) {a(n) = my(a0, a1, s=n<0); if( n>-3 && n<1, return(n+1)); if( n<0, n=-1-n); a0=1-s; a1=1; for(k=2, n, a2 = (2*k-1)*a1 - a0; a0=a1; a1=a2); (-1)^(s*n) * a1}; /* Michael Somos, Sep 11 2014 */

(MAGMA) [1] cat [ n le 2 select n else (2*n-1)*Self(n-1)-Self(n-2): n in [1..25] ]; // Vincenzo Librandi, Mar 08 2015

CROSSREFS

Cf. A053984, A058798.

Sequence in context: A269460 A207649 A289713 * A192939 A107883 A088182

Adjacent sequences:  A053980 A053981 A053982 * A053984 A053985 A053986

KEYWORD

easy,frac,nonn

AUTHOR

Vladeta Jovovic, Apr 02 2000

EXTENSIONS

Additional comments from Michael Somos, Aug 23 2000

More terms from Miklos Kristof, Jun 15 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 01:39 EDT 2018. Contains 316378 sequences. (Running on oeis4.)