login
A053867
Parity of sum of divisors of n less than n.
2
0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1
OFFSET
1,1
COMMENTS
Partial sums up to n is about n/2. - David A. Corneth, Oct 20 2017
FORMULA
a(n) = A001065(n) mod 2.
a(2n+1) = 1 - A010052(2n+1); a(4n + 2) = 1 - a(2n + 1); a(4n) = a(2n). - David A. Corneth, Oct 20 2017
EXAMPLE
a(9) = 0 because sum of proper divisors of 9 is 1 + 3 = 4 which is an even number.
From David A. Corneth, Oct 20 2017: (Start)
a(25) = 0 because 25 is an odd square. Therefore, a(2*25) = a(50) = 1 - a(25) = 1 and a(100) = a(2*50) = 1.
a(27) = 1 because 17 isn't an odd square. Therefore, a(2*27) = a(54) = 1-a(27) = 0 and a(108) = a(2*54) = 0. (End)
PROG
(PARI) A053867(n) = ((sigma(n)-n)%2); \\ Antti Karttunen, Oct 20 2017
(PARI) first(n) = my(res = vector(n, i, i%2)); forstep(i=1, sqrtint(n), 2, for(j=0, logint(n\i^2, 2), c = i^2 << j; res[c] = 1 - res[c])); res \\ David A. Corneth, Oct 20 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Mar 29 2000
EXTENSIONS
More terms from James A. Sellers, Apr 08 2000
STATUS
approved