login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053820 Sum_{k=1..n, gcd(n,k) = 1} k^4. 2

%I

%S 1,1,17,82,354,626,2275,3108,7395,9044,25333,17668,60710,50470,88388,

%T 103496,243848,129750,432345,266088,497574,497178,1151403,539912,

%U 1541770,1153724,1900089,1516844,3756718,1246568,5273999

%N Sum_{k=1..n, gcd(n,k) = 1} k^4.

%D T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 48, problem 15, the function phi_4(n).

%D L. E. Dickson, History of the Theory of Numbers, Vol. I (Reprint 1966), p. 140.

%H Vincenzo Librandi, <a href="/A053820/b053820.txt">Table of n, a(n) for n = 1..1000</a>

%H P. G. Brown, <a href="http://www.jstor.org/stable/3621931">Some comments on inverse arithmetic functions</a>, Math. Gaz. 89 (2005) 403-408.

%F a(n)=(6*n^4*A000010(n)+10*n^3*A023900(n)-n*A063453(n))/30 for n>1. Formula is derived from a more general formula of A. Thacker (1850), see [Dickson, Brown]. - _Franz Vrabec_, Aug 21 2005

%t a[n_] := Sum[If[GCD[n, k] == 1, k^4, 0], {k, 1, n}]; Table[a[n], {n, 1, 31}] (* _Jean-Fran├žois Alcover_, Feb 26 2014 *)

%o (PARI) a(n) = sum(k=1, n, (gcd(n,k) == 1)*k^4); \\ _Michel Marcus_, Feb 26 2014

%K nonn

%O 1,3

%A _N. J. A. Sloane_, Apr 07 2000

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 5 15:24 EST 2016. Contains 278770 sequences.