login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053820 Sum_{k=1..n, gcd(n,k) = 1} k^4. 2

%I

%S 1,1,17,82,354,626,2275,3108,7395,9044,25333,17668,60710,50470,88388,

%T 103496,243848,129750,432345,266088,497574,497178,1151403,539912,

%U 1541770,1153724,1900089,1516844,3756718,1246568,5273999

%N Sum_{k=1..n, gcd(n,k) = 1} k^4.

%D T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 48, problem 15, the function phi_4(n).

%D L. E. Dickson, History of the Theory of Numbers, Vol. I (Reprint 1966), p. 140.

%H Vincenzo Librandi, <a href="/A053820/b053820.txt">Table of n, a(n) for n = 1..1000</a>

%H P. G. Brown, <a href="http://www.jstor.org/stable/3621931">Some comments on inverse arithmetic functions</a>, Math. Gaz. 89 (2005) 403-408.

%F a(n)=(6*n^4*A000010(n)+10*n^3*A023900(n)-n*A063453(n))/30 for n>1. Formula is derived from a more general formula of A. Thacker (1850), see [Dickson, Brown]. - _Franz Vrabec_, Aug 21 2005

%t a[n_] := Sum[If[GCD[n, k] == 1, k^4, 0], {k, 1, n}]; Table[a[n], {n, 1, 31}] (* _Jean-Fran├žois Alcover_, Feb 26 2014 *)

%o (PARI) a(n) = sum(k=1, n, (gcd(n,k) == 1)*k^4); \\ _Michel Marcus_, Feb 26 2014

%K nonn

%O 1,3

%A _N. J. A. Sloane_, Apr 07 2000

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 23 16:11 EST 2014. Contains 249851 sequences.