%I #49 Feb 17 2018 18:32:27
%S 0,4,10,18,27,37,49,63,78,94,112,132,153,175,199,224,250,277,305,335,
%T 367,400,434,469,505,543,582,622,664,708,753,799,847,896,946,997,1049,
%U 1103,1158,1214,1271,1329,1389,1451,1514,1578,1643,1709,1777,1846,1916,1988
%N Sum of first n composite numbers.
%C a(A196415(n)) = A036691(A196415(n)) / A141092(n). - _Reinhard Zumkeller_, Oct 03 2011
%H Reinhard Zumkeller, <a href="/A053767/b053767.txt">Table of n, a(n) for n = 0..10000</a>
%H C. Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_089.htm">See also</a>
%F a(n) = A000217(A002808(n)) - A034387(A002808(n)) - 1 . - _Robert Israel_, Jan 09 2015
%F a(n) = A051349(n+1) - 1. - _Michel Marcus_, Feb 16 2018
%p A053767 := proc(n)
%p add(A002808(i),i=1..n) ;
%p end proc: # _R. J. Mathar_, Oct 03 2011
%p ListTools[PartialSums](remove(isprime,[$2..1000])); # _Robert Israel_, Jan 09 2015
%t lst={};s=0;Do[If[ !PrimeQ[n], s=s+n;AppendTo[lst, s]], {n, 2, 10^2}];lst (* _Vladimir Joseph Stephan Orlovsky_, Aug 14 2008 *)
%t Accumulate[Complement[Range[2,100],Prime[Range[PrimePi[100]]]]] (* _Harvey P. Dale_, Dec 28 2010 *)
%t Accumulate[Select[Range[2, 100], ! PrimeQ[#] &]]
%o (Haskell)
%o a053767 n = a053767_list !! (n-1)
%o a053767_list = scanl1 (+) a002808_list -- _Reinhard Zumkeller_, Oct 03 2011
%o (PARI) lista(nn) = {my(s=0); forcomposite(n=0, nn, print1(s, ", "); s += n;);} \\ _Michel Marcus_, Jan 09 2015
%Y Cf. A002808, A051349.
%Y First differences of A023539.
%K nonn
%O 0,2
%A _G. L. Honaker, Jr._, Mar 29 2000
%E a(0)=0 prepended by _Max Alekseyev_, Feb 10 2018