login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053760 Smallest positive quadratic nonresidue modulo p, where p is the n-th prime. 12
2, 2, 2, 3, 2, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 2, 2, 2, 7, 5, 3, 2, 3, 5, 2, 3, 2, 2, 3, 3, 2, 3, 2, 2, 3, 2, 2, 5, 2, 2, 2, 7, 5, 2, 3, 2, 3, 2, 2, 3, 7, 7, 2, 3, 5, 2, 3, 2, 3, 2, 2, 2, 11, 5, 2, 2, 5, 2, 2, 3, 7, 3, 2, 2, 5, 2, 2, 3, 7, 2, 2, 7, 5, 3, 2, 3, 5, 2, 3, 2, 13, 3, 2, 2, 5, 2, 3, 2, 2, 2, 2, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Assuming the Generalized Riemann Hypothesis, Montgomery proved a(n) << (log p(n))^2, meaning that there is a constant c such that |a(n)| <= c*(log p(n))^2. - Jonathan Vos Post, Jan 06 2007

a(n) < 1 + sqrt(p), where p is the n-th prime (Theorem 3.9 in Niven, Zuckerman, and Montgomery). - Jonathan Sondow, May 13 2010

Treviño proves that a(n) < 1.1 p^(1/4) log p for n > 2 where p is the n-th prime. - Charles R Greathouse IV, Dec 06 2012

a(n) is always a prime, because if x*y is a nonresidue, then x or y must also be a nonresidue. - Jonathan Sondow, May 02 2013

REFERENCES

P. Erdős, Remarks on number theory. I., Mat. Lapok 12 (1961) 10-17; Math. Rev. 26 #2410.

S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 94-98.

H. L. Montgomery, Topics in Multiplicative Number Theory, 3rd ed., Lecture Notes in Mathematics, Vol. 227 (1971), MR 49:2616.

Ivan Niven, Herbert S. Zuckerman, and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991, p. 147.

P. Ribenboim, The New Book of Prime Number Records, 3rd ed., Springer-Verlag 1996; Math. Rev. 96k:11112.

LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000

R. Baillie and S. S. Wagstaff, Lucas pseudoprimes, Math. Comp. 35 (1980) 1391-1417; Math. Rev. 81j:10005.

S. R. Finch, Quadratic Residues

K. Matthews, Finding n(p), the least quadratic non-residue (mod p)

Enrique Treviño, The least k-th power non-residue, 2011 preprint

Eric Weisstein's World of Mathematics, Quadratic Nonresidue

EXAMPLE

The 5th prime is 11, and the positive quadratic residues mod 11 are 1^2 = 1, 2^2 = 4, 3^2 = 9, 4^2 = 5 and 5^2 = 3. Since 2 is missing, a(5) = 2.

The only positive quadratic redidue mod 2 is 1, so a(1)=2.

MATHEMATICA

Table[ p = Prime[n]; First[ Select[ Range[p], JacobiSymbol[#, p] != 1 &]], {n, 1, 100}] (* Jonathan Sondow, Mar 03 2013 *)

PROG

(PARI) residue(n, m)={local(r); r=0; for(i=0, floor(m/2), if(i^2%m==n, r=1)); r

A053760(n)={local(r, m); r=0; m=0; while(r==0, m=m+1; if(!residue(m, prime(n)), r=1)); m} \\ Michael B. Porter, May 02 2010

(PARI) qnr(p)=my(m); while(1, if(!issquare(Mod(m++, p)), return(m)))

a(n)=if(n>1, qnr(prime(n)), 2) \\ Charles R Greathouse IV, Feb 27 2013

CROSSREFS

Cf. A000229.

Sequence in context: A219252 A085694 A160493 * A223942 A129654 A138789

Adjacent sequences:  A053757 A053758 A053759 * A053761 A053762 A053763

KEYWORD

nonn

AUTHOR

Steven Finch, Apr 05 2000

EXTENSIONS

More terms from James A. Sellers, Apr 08 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 25 06:56 EDT 2014. Contains 248518 sequences.