login
A053730
a(n) = 2^(n-2)*(n^2 - n + 4).
3
1, 2, 6, 20, 64, 192, 544, 1472, 3840, 9728, 24064, 58368, 139264, 327680, 761856, 1753088, 3997696, 9043968, 20316160, 45350912, 100663296, 222298112, 488636416, 1069547520, 2332033024, 5066719232, 10972299264, 23689428992
OFFSET
0,2
FORMULA
G.f.: (1-4*x+6*x^2)/(1-2*x)^3. - Colin Barker, Apr 01 2012
a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3). - Vincenzo Librandi, Apr 28 2012
a(n) = Sum_{k=0..n} binomial(n,k) * A077028(n,k), where A077028(n,k) = (n-k)*k + 1. - Paul D. Hanna, Oct 11 2015
MAPLE
seq(2^(n-2)*(n^2 -n +4), n=0..30); # G. C. Greubel, Sep 06 2019
MATHEMATICA
CoefficientList[Series[(1-4*x+6*x^2)/(1-2*x)^3, {x, 0, 30}], x] (* Vincenzo Librandi, Apr 28 2012 *)
LinearRecurrence[{6, -12, 8}, {1, 2, 6}, 30] (* G. C. Greubel, Sep 06 2019 *)
PROG
(Magma) I:=[1, 2, 6]; [n le 3 select I[n] else 6*Self(n-1)-12*Self(n-2) +8*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Apr 28 2012
(PARI) vector(30, n, 2^(n-3)*(n^2 -3*n +6)) \\ G. C. Greubel, Sep 06 2019
(Sage) [2^(n-2)*(n^2 -n +4) for n in (0..30)] # G. C. Greubel, Sep 06 2019
(GAP) List([0..30], n-> 2^(n-2)*(n^2 -n +4)); # G. C. Greubel, Sep 06 2019
CROSSREFS
Cf. A053545.
Sequence in context: A177792 A193235 A199102 * A220874 A273902 A181301
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 24 2000
STATUS
approved