The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A053730 a(n) = 2^(n-2)*(n^2 - n + 4). 3
 1, 2, 6, 20, 64, 192, 544, 1472, 3840, 9728, 24064, 58368, 139264, 327680, 761856, 1753088, 3997696, 9043968, 20316160, 45350912, 100663296, 222298112, 488636416, 1069547520, 2332033024, 5066719232, 10972299264, 23689428992 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (6,-12,8). FORMULA G.f.: (1-4*x+6*x^2)/(1-2*x)^3. - Colin Barker, Apr 01 2012 a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3). - Vincenzo Librandi, Apr 28 2012 a(n) = Sum_{k=0..n} binomial(n,k) * A077028(n,k), where A077028(n,k) = (n-k)*k + 1. - Paul D. Hanna, Oct 11 2015 MAPLE seq(2^(n-2)*(n^2 -n +4), n=0..30); # G. C. Greubel, Sep 06 2019 MATHEMATICA CoefficientList[Series[(1-4*x+6*x^2)/(1-2*x)^3, {x, 0, 30}], x] (* Vincenzo Librandi, Apr 28 2012 *) LinearRecurrence[{6, -12, 8}, {1, 2, 6}, 30] (* G. C. Greubel, Sep 06 2019 *) PROG (MAGMA) I:=[1, 2, 6]; [n le 3 select I[n] else 6*Self(n-1)-12*Self(n-2) +8*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Apr 28 2012 (PARI) vector(30, n, 2^(n-3)*(n^2 -3*n +6)) \\ G. C. Greubel, Sep 06 2019 (Sage) [2^(n-2)*(n^2 -n +4) for n in (0..30)] # G. C. Greubel, Sep 06 2019 (GAP) List([0..30], n-> 2^(n-2)*(n^2 -n +4)); # G. C. Greubel, Sep 06 2019 CROSSREFS Cf. A053545. Sequence in context: A177792 A193235 A199102 * A220874 A273902 A181301 Adjacent sequences:  A053727 A053728 A053729 * A053731 A053732 A053733 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Mar 24 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 4 09:03 EDT 2020. Contains 336201 sequences. (Running on oeis4.)