The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A053722 Number of n X n binary matrices of order dividing 2 (also number of solutions to X^2=I in GL(n,2)). 25
 1, 4, 22, 316, 6976, 373024, 32252032, 6619979776, 2253838544896, 1810098020122624, 2442718932612677632, 7758088894129169760256, 41674675294431186817908736, 526370120583359572695165435904 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS In characteristic 2, A^2 = I if and only if B^2 = 0 where B = I + A, so a(n) is also equal to the number of n X n binary matrices B such that B^2 = 0. REFERENCES V. Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished. LINKS Robert Israel, Table of n, a(n) for n = 1..81 Jason Fulman, C. Ryan Vinroot, Generating functions for real character degree sums of finite general linear and unitary groups, arXiv:1306.0031 [math.GR], 2013 (see Theorem 3.4 for a g.f.). Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1. FORMULA a(n) = sum k=1...[n/2] (2^n - 1)(2^n - 2) ... (2^n - 2^{n-k+1})/(2^k - 1)(2^k - 2)....(2^k - 2^{k-1}) * (2^{n-k} - 1)(2^{n-k} - 2)...(2^{n-k} - 2^{n-2k+1}). - Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 05 2001 MAPLE Q:= Product(1+u/2^i, i=1..infinity)/Product(1-u^2/2^i, i=1..infinity): S:= series(Q, u, 31): seq(coeff(S, u, n)*mul(2^i-1, i=1..n), n=1..30); # Robert Israel, Mar 26 2018 MATHEMATICA QP = QPochhammer; Q = (1-x) QP[-x, 1/2]/QP[x^2, 1/2]; Table[(-1)^n QP[2, 2, n] SeriesCoefficient[Q, {x, 0, n}], {n, 1, 14}] (* Jean-François Alcover, Sep 17 2018, from Maple *) PROG # (Sage) g = lambda n: GL(n, 2).order() if n>0 else 1 a053722 = lambda n: g(n)*sum(1/(g(k)*g(n-2*k)*2**(k**2+2*k*(n-2*k))) for k in range(1+floor(n/2))) if n>0 else 0 map(a053722, range(25)) # Dmitrii Pasechnik, Oct 02 2015 CROSSREFS Sequence in context: A119009 A326883 A317803 * A336212 A276122 A145504 Adjacent sequences:  A053719 A053720 A053721 * A053723 A053724 A053725 KEYWORD nonn AUTHOR Vladeta Jovovic, Mar 23 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 19 21:34 EDT 2020. Contains 337184 sequences. (Running on oeis4.)